Spaces:
Paused
Paused
import streamlit as st | |
from transformers import AutoTokenizer | |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
from huggingface_hub import snapshot_download | |
import os | |
import torch | |
# Clear up some memory | |
#torch.cuda.empty_cache() | |
# Try reducing the number of threads PyTorch uses | |
# torch.set_num_threads(1) | |
cwd = os.getcwd() | |
cachedir = cwd + '/cache' | |
# Check if the directory exists before creating it | |
if not os.path.exists(cachedir): | |
os.mkdir(cachedir) | |
os.environ['HF_HOME'] = cachedir | |
local_folder = cachedir + "/model" | |
quantized_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ" | |
# Check if the model has already been downloaded | |
model_path = os.path.join(local_folder, 'pytorch_model.bin') | |
if not os.path.isfile(model_path): | |
snapshot_download(repo_id=quantized_model_dir, local_dir=local_folder, local_dir_use_symlinks=False) | |
model_basename = cachedir + "/model/Jackson2-4bit-128g-GPTQ" | |
use_strict = False | |
use_triton = False | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(local_folder, use_fast=False) | |
quantize_config = BaseQuantizeConfig( | |
bits=4, | |
group_size=128, | |
desc_act=False | |
) | |
model = AutoGPTQForCausalLM.from_quantized( | |
local_folder, | |
use_safetensors=True, | |
strict=use_strict, | |
model_basename=model_basename, | |
device="cuda:0", | |
trust_remote_code=True, | |
use_triton=use_triton, | |
quantize_config=quantize_config | |
) | |
#st.write(model.hf_device_map) | |
user_input = st.text_input("Input a phrase") | |
prompt_template = f'USER: {user_input}\nASSISTANT:' | |
# Generate output when the "Generate" button is pressed | |
if st.button("Generate the prompt"): | |
inputs = tokenizer(prompt_template, return_tensors="pt") | |
outputs = model.generate( | |
input_ids=inputs.input_ids.to("cuda:0"), | |
attention_mask=inputs.attention_mask.to("cuda:0"), | |
max_length=512 + inputs.input_ids.size(-1), | |
temperature=0.1, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.text_area("Prompt", value=generated_text) | |