Spaces:
Paused
Paused
| import streamlit as st | |
| from transformers import AutoTokenizer, TextStreamer, pipeline | |
| from auto_gptq import AutoGPTQForCausalLM | |
| from huggingface_hub import snapshot_download | |
| import os | |
| import torch | |
| import subprocess | |
| # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' # => just makes sense with more than one GPU, since is trying to split | |
| #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # => just makes sense when more GPUs | |
| #os.environ["CUDA_VISIBLE_DEVICES"]="0,1" # => this is an example of numbers of devices | |
| # Define pretrained and quantized model directories | |
| pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ" | |
| #cwd = os.getcwd() | |
| #quantized_model_dir = cwd + "/Jackson2-4bit-128g-GPTQ" | |
| # Check if the model directory is empty (i.e., model not downloaded yet) | |
| #if not os.path.exists(quantized_model_dir) or not os.listdir(quantized_model_dir): | |
| # Create the cache directory if it doesn't exist | |
| # os.makedirs(quantized_model_dir, exist_ok=True) | |
| # snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=True) | |
| #st.write(f'{os.listdir(quantized_model_dir)}') | |
| #model_name_or_path = quantized_model_dir | |
| model_basename = "Jackson2-4bit-128g-GPTQ" | |
| # Before allocating or loading the model, clear up memory | |
| #gc.collect() | |
| #torch.cuda.empty_cache() | |
| use_triton = False | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| #tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True, legacy=False) | |
| tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" # best configuration besides the auto option | |
| model = AutoGPTQForCausalLM.from_quantized( | |
| pretrained_model_dir, | |
| model_basename=model_basename, | |
| use_safetensors=True, | |
| device=device, | |
| max_memory={0: "10GIB"} | |
| ) | |
| viz = torch.cuda.memory_summary() | |
| st.write(viz) | |
| def run(): | |
| output: str = "" | |
| try: | |
| output = subprocess.check_output(["nvidia-smi"], text=True) | |
| except FileNotFoundError: | |
| output = subprocess.check_output(["ls", "-alh"], text=True) | |
| return f"#{output}" | |
| st.write(run()) | |
| user_input = st.text_input("Input a phrase") | |
| prompt_template = f'USER: {user_input}\nASSISTANT:' | |
| if st.button("Generate the prompt"): | |
| inputs = tokenizer(prompt_template, return_tensors='pt', max_length=512, truncation=True, padding='max_length', batch_size=4) | |
| #inputs = tokenizer(prompt_template, return_tensors='pt') | |
| #streamer = TextStreamer(tokenizer) | |
| #pipe = pipeline( | |
| # "text-generation", | |
| # model=model, | |
| # tokenizer=tokenizer, | |
| # streamer=streamer, | |
| # max_new_tokens=512, | |
| # temperature=0.2, | |
| # top_p=0.95, | |
| # repetition_penalty=1.15 | |
| #) | |
| output = model.generate(**prompt_template) | |
| st.markdown(f"tokenizer.decode(output)") | |
| #st.write(output[0]['generated_text']) |