Spaces:
Paused
Paused
import streamlit as st | |
from transformers import AutoTokenizer, pipeline, logging | |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
quantized_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ" | |
model_basename = "Jackson2-4bit-128g-GPTQ.safetensors" | |
use_strict = False | |
use_triton = False | |
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True) | |
quantize_config = BaseQuantizeConfig( | |
bits=4, | |
group_size=128, | |
desc_act=False | |
) | |
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, | |
use_safetensors=True, | |
strict=use_strict, | |
model_basename=model_basename, | |
device="cuda:0", | |
use_triton=use_triton, | |
quantize_config=quantize_config) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.1, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
) | |
user_input = st.text_input("Input a phrase") | |
prompt_template=f'''USER: {user_input} | |
ASSISTANT:''' | |
# Generate output when the "Generate" button is pressed | |
if st.button("Generate the prompt"): | |
output = pipe(prompt_template)[0]['generated_text'] | |
st.text_area("Prompt", value=output) |