# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, normal_init from mmcv.ops import DeformConv2d from mmcv.runner import force_fp32 from mmdet.core import multi_apply from ..builder import HEADS, build_loss from .corner_head import CornerHead @HEADS.register_module() class CentripetalHead(CornerHead): """Head of CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection. CentripetalHead inherits from :class:`CornerHead`. It removes the embedding branch and adds guiding shift and centripetal shift branches. More details can be found in the `paper `_ . Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. num_feat_levels (int): Levels of feature from the previous module. 2 for HourglassNet-104 and 1 for HourglassNet-52. HourglassNet-104 outputs the final feature and intermediate supervision feature and HourglassNet-52 only outputs the final feature. Default: 2. corner_emb_channels (int): Channel of embedding vector. Default: 1. train_cfg (dict | None): Training config. Useless in CornerHead, but we keep this variable for SingleStageDetector. Default: None. test_cfg (dict | None): Testing config of CornerHead. Default: None. loss_heatmap (dict | None): Config of corner heatmap loss. Default: GaussianFocalLoss. loss_embedding (dict | None): Config of corner embedding loss. Default: AssociativeEmbeddingLoss. loss_offset (dict | None): Config of corner offset loss. Default: SmoothL1Loss. loss_guiding_shift (dict): Config of guiding shift loss. Default: SmoothL1Loss. loss_centripetal_shift (dict): Config of centripetal shift loss. Default: SmoothL1Loss. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, *args, centripetal_shift_channels=2, guiding_shift_channels=2, feat_adaption_conv_kernel=3, loss_guiding_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=0.05), loss_centripetal_shift=dict( type='SmoothL1Loss', beta=1.0, loss_weight=1), init_cfg=None, **kwargs): assert init_cfg is None, 'To prevent abnormal initialization ' \ 'behavior, init_cfg is not allowed to be set' assert centripetal_shift_channels == 2, ( 'CentripetalHead only support centripetal_shift_channels == 2') self.centripetal_shift_channels = centripetal_shift_channels assert guiding_shift_channels == 2, ( 'CentripetalHead only support guiding_shift_channels == 2') self.guiding_shift_channels = guiding_shift_channels self.feat_adaption_conv_kernel = feat_adaption_conv_kernel super(CentripetalHead, self).__init__( *args, init_cfg=init_cfg, **kwargs) self.loss_guiding_shift = build_loss(loss_guiding_shift) self.loss_centripetal_shift = build_loss(loss_centripetal_shift) def _init_centripetal_layers(self): """Initialize centripetal layers. Including feature adaption deform convs (feat_adaption), deform offset prediction convs (dcn_off), guiding shift (guiding_shift) and centripetal shift ( centripetal_shift). Each branch has two parts: prefix `tl_` for top-left and `br_` for bottom-right. """ self.tl_feat_adaption = nn.ModuleList() self.br_feat_adaption = nn.ModuleList() self.tl_dcn_offset = nn.ModuleList() self.br_dcn_offset = nn.ModuleList() self.tl_guiding_shift = nn.ModuleList() self.br_guiding_shift = nn.ModuleList() self.tl_centripetal_shift = nn.ModuleList() self.br_centripetal_shift = nn.ModuleList() for _ in range(self.num_feat_levels): self.tl_feat_adaption.append( DeformConv2d(self.in_channels, self.in_channels, self.feat_adaption_conv_kernel, 1, 1)) self.br_feat_adaption.append( DeformConv2d(self.in_channels, self.in_channels, self.feat_adaption_conv_kernel, 1, 1)) self.tl_guiding_shift.append( self._make_layers( out_channels=self.guiding_shift_channels, in_channels=self.in_channels)) self.br_guiding_shift.append( self._make_layers( out_channels=self.guiding_shift_channels, in_channels=self.in_channels)) self.tl_dcn_offset.append( ConvModule( self.guiding_shift_channels, self.feat_adaption_conv_kernel**2 * self.guiding_shift_channels, 1, bias=False, act_cfg=None)) self.br_dcn_offset.append( ConvModule( self.guiding_shift_channels, self.feat_adaption_conv_kernel**2 * self.guiding_shift_channels, 1, bias=False, act_cfg=None)) self.tl_centripetal_shift.append( self._make_layers( out_channels=self.centripetal_shift_channels, in_channels=self.in_channels)) self.br_centripetal_shift.append( self._make_layers( out_channels=self.centripetal_shift_channels, in_channels=self.in_channels)) def _init_layers(self): """Initialize layers for CentripetalHead. Including two parts: CornerHead layers and CentripetalHead layers """ super()._init_layers() # using _init_layers in CornerHead self._init_centripetal_layers() def init_weights(self): super(CentripetalHead, self).init_weights() for i in range(self.num_feat_levels): normal_init(self.tl_feat_adaption[i], std=0.01) normal_init(self.br_feat_adaption[i], std=0.01) normal_init(self.tl_dcn_offset[i].conv, std=0.1) normal_init(self.br_dcn_offset[i].conv, std=0.1) _ = [x.conv.reset_parameters() for x in self.tl_guiding_shift[i]] _ = [x.conv.reset_parameters() for x in self.br_guiding_shift[i]] _ = [ x.conv.reset_parameters() for x in self.tl_centripetal_shift[i] ] _ = [ x.conv.reset_parameters() for x in self.br_centripetal_shift[i] ] def forward_single(self, x, lvl_ind): """Forward feature of a single level. Args: x (Tensor): Feature of a single level. lvl_ind (int): Level index of current feature. Returns: tuple[Tensor]: A tuple of CentripetalHead's output for current feature level. Containing the following Tensors: - tl_heat (Tensor): Predicted top-left corner heatmap. - br_heat (Tensor): Predicted bottom-right corner heatmap. - tl_off (Tensor): Predicted top-left offset heatmap. - br_off (Tensor): Predicted bottom-right offset heatmap. - tl_guiding_shift (Tensor): Predicted top-left guiding shift heatmap. - br_guiding_shift (Tensor): Predicted bottom-right guiding shift heatmap. - tl_centripetal_shift (Tensor): Predicted top-left centripetal shift heatmap. - br_centripetal_shift (Tensor): Predicted bottom-right centripetal shift heatmap. """ tl_heat, br_heat, _, _, tl_off, br_off, tl_pool, br_pool = super( ).forward_single( x, lvl_ind, return_pool=True) tl_guiding_shift = self.tl_guiding_shift[lvl_ind](tl_pool) br_guiding_shift = self.br_guiding_shift[lvl_ind](br_pool) tl_dcn_offset = self.tl_dcn_offset[lvl_ind](tl_guiding_shift.detach()) br_dcn_offset = self.br_dcn_offset[lvl_ind](br_guiding_shift.detach()) tl_feat_adaption = self.tl_feat_adaption[lvl_ind](tl_pool, tl_dcn_offset) br_feat_adaption = self.br_feat_adaption[lvl_ind](br_pool, br_dcn_offset) tl_centripetal_shift = self.tl_centripetal_shift[lvl_ind]( tl_feat_adaption) br_centripetal_shift = self.br_centripetal_shift[lvl_ind]( br_feat_adaption) result_list = [ tl_heat, br_heat, tl_off, br_off, tl_guiding_shift, br_guiding_shift, tl_centripetal_shift, br_centripetal_shift ] return result_list @force_fp32() def loss(self, tl_heats, br_heats, tl_offs, br_offs, tl_guiding_shifts, br_guiding_shifts, tl_centripetal_shifts, br_centripetal_shifts, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: tl_heats (list[Tensor]): Top-left corner heatmaps for each level with shape (N, num_classes, H, W). br_heats (list[Tensor]): Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W). tl_offs (list[Tensor]): Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W). br_offs (list[Tensor]): Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W). tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each level with shape (N, guiding_shift_channels, H, W). br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for each level with shape (N, guiding_shift_channels, H, W). tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W). br_centripetal_shifts (list[Tensor]): Bottom-right centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W). gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [left, top, right, bottom] format. gt_labels (list[Tensor]): Class indices corresponding to each box. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (list[Tensor] | None): Specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. Containing the following losses: - det_loss (list[Tensor]): Corner keypoint losses of all feature levels. - off_loss (list[Tensor]): Corner offset losses of all feature levels. - guiding_loss (list[Tensor]): Guiding shift losses of all feature levels. - centripetal_loss (list[Tensor]): Centripetal shift losses of all feature levels. """ targets = self.get_targets( gt_bboxes, gt_labels, tl_heats[-1].shape, img_metas[0]['pad_shape'], with_corner_emb=self.with_corner_emb, with_guiding_shift=True, with_centripetal_shift=True) mlvl_targets = [targets for _ in range(self.num_feat_levels)] [det_losses, off_losses, guiding_losses, centripetal_losses ] = multi_apply(self.loss_single, tl_heats, br_heats, tl_offs, br_offs, tl_guiding_shifts, br_guiding_shifts, tl_centripetal_shifts, br_centripetal_shifts, mlvl_targets) loss_dict = dict( det_loss=det_losses, off_loss=off_losses, guiding_loss=guiding_losses, centripetal_loss=centripetal_losses) return loss_dict def loss_single(self, tl_hmp, br_hmp, tl_off, br_off, tl_guiding_shift, br_guiding_shift, tl_centripetal_shift, br_centripetal_shift, targets): """Compute losses for single level. Args: tl_hmp (Tensor): Top-left corner heatmap for current level with shape (N, num_classes, H, W). br_hmp (Tensor): Bottom-right corner heatmap for current level with shape (N, num_classes, H, W). tl_off (Tensor): Top-left corner offset for current level with shape (N, corner_offset_channels, H, W). br_off (Tensor): Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W). tl_guiding_shift (Tensor): Top-left guiding shift for current level with shape (N, guiding_shift_channels, H, W). br_guiding_shift (Tensor): Bottom-right guiding shift for current level with shape (N, guiding_shift_channels, H, W). tl_centripetal_shift (Tensor): Top-left centripetal shift for current level with shape (N, centripetal_shift_channels, H, W). br_centripetal_shift (Tensor): Bottom-right centripetal shift for current level with shape (N, centripetal_shift_channels, H, W). targets (dict): Corner target generated by `get_targets`. Returns: tuple[torch.Tensor]: Losses of the head's different branches containing the following losses: - det_loss (Tensor): Corner keypoint loss. - off_loss (Tensor): Corner offset loss. - guiding_loss (Tensor): Guiding shift loss. - centripetal_loss (Tensor): Centripetal shift loss. """ targets['corner_embedding'] = None det_loss, _, _, off_loss = super().loss_single(tl_hmp, br_hmp, None, None, tl_off, br_off, targets) gt_tl_guiding_shift = targets['topleft_guiding_shift'] gt_br_guiding_shift = targets['bottomright_guiding_shift'] gt_tl_centripetal_shift = targets['topleft_centripetal_shift'] gt_br_centripetal_shift = targets['bottomright_centripetal_shift'] gt_tl_heatmap = targets['topleft_heatmap'] gt_br_heatmap = targets['bottomright_heatmap'] # We only compute the offset loss at the real corner position. # The value of real corner would be 1 in heatmap ground truth. # The mask is computed in class agnostic mode and its shape is # batch * 1 * width * height. tl_mask = gt_tl_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as( gt_tl_heatmap) br_mask = gt_br_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as( gt_br_heatmap) # Guiding shift loss tl_guiding_loss = self.loss_guiding_shift( tl_guiding_shift, gt_tl_guiding_shift, tl_mask, avg_factor=tl_mask.sum()) br_guiding_loss = self.loss_guiding_shift( br_guiding_shift, gt_br_guiding_shift, br_mask, avg_factor=br_mask.sum()) guiding_loss = (tl_guiding_loss + br_guiding_loss) / 2.0 # Centripetal shift loss tl_centripetal_loss = self.loss_centripetal_shift( tl_centripetal_shift, gt_tl_centripetal_shift, tl_mask, avg_factor=tl_mask.sum()) br_centripetal_loss = self.loss_centripetal_shift( br_centripetal_shift, gt_br_centripetal_shift, br_mask, avg_factor=br_mask.sum()) centripetal_loss = (tl_centripetal_loss + br_centripetal_loss) / 2.0 return det_loss, off_loss, guiding_loss, centripetal_loss @force_fp32() def get_bboxes(self, tl_heats, br_heats, tl_offs, br_offs, tl_guiding_shifts, br_guiding_shifts, tl_centripetal_shifts, br_centripetal_shifts, img_metas, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. Args: tl_heats (list[Tensor]): Top-left corner heatmaps for each level with shape (N, num_classes, H, W). br_heats (list[Tensor]): Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W). tl_offs (list[Tensor]): Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W). br_offs (list[Tensor]): Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W). tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each level with shape (N, guiding_shift_channels, H, W). Useless in this function, we keep this arg because it's the raw output from CentripetalHead. br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for each level with shape (N, guiding_shift_channels, H, W). Useless in this function, we keep this arg because it's the raw output from CentripetalHead. tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W). br_centripetal_shifts (list[Tensor]): Bottom-right centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. """ assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(img_metas) result_list = [] for img_id in range(len(img_metas)): result_list.append( self._get_bboxes_single( tl_heats[-1][img_id:img_id + 1, :], br_heats[-1][img_id:img_id + 1, :], tl_offs[-1][img_id:img_id + 1, :], br_offs[-1][img_id:img_id + 1, :], img_metas[img_id], tl_emb=None, br_emb=None, tl_centripetal_shift=tl_centripetal_shifts[-1][ img_id:img_id + 1, :], br_centripetal_shift=br_centripetal_shifts[-1][ img_id:img_id + 1, :], rescale=rescale, with_nms=with_nms)) return result_list