# Copyright (c) OpenMMLab. All rights reserved. import math import torch from mmcv.runner import get_dist_info from torch.utils.data import Sampler from mmdet.core.utils import sync_random_seed class ClassAwareSampler(Sampler): r"""Sampler that restricts data loading to the label of the dataset. A class-aware sampling strategy to effectively tackle the non-uniform class distribution. The length of the training data is consistent with source data. Simple improvements based on `Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks `_ The implementation logic is referred to https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py Args: dataset: Dataset used for sampling. samples_per_gpu (int): When model is :obj:`DistributedDataParallel`, it is the number of training samples on each GPU. When model is :obj:`DataParallel`, it is `num_gpus * samples_per_gpu`. Default : 1. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. seed (int, optional): random seed used to shuffle the sampler if ``shuffle=True``. This number should be identical across all processes in the distributed group. Default: 0. num_sample_class (int): The number of samples taken from each per-label list. Default: 1 """ def __init__(self, dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=0, num_sample_class=1): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.num_replicas = num_replicas self.samples_per_gpu = samples_per_gpu self.rank = rank self.epoch = 0 # Must be the same across all workers. If None, will use a # random seed shared among workers # (require synchronization among all workers) self.seed = sync_random_seed(seed) # The number of samples taken from each per-label list assert num_sample_class > 0 and isinstance(num_sample_class, int) self.num_sample_class = num_sample_class # Get per-label image list from dataset assert hasattr(dataset, 'get_cat2imgs'), \ 'dataset must have `get_cat2imgs` function' self.cat_dict = dataset.get_cat2imgs() self.num_samples = int( math.ceil( len(self.dataset) * 1.0 / self.num_replicas / self.samples_per_gpu)) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas # get number of images containing each category self.num_cat_imgs = [len(x) for x in self.cat_dict.values()] # filter labels without images self.valid_cat_inds = [ i for i, length in enumerate(self.num_cat_imgs) if length != 0 ] self.num_classes = len(self.valid_cat_inds) def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch + self.seed) # initialize label list label_iter_list = RandomCycleIter(self.valid_cat_inds, generator=g) # initialize each per-label image list data_iter_dict = dict() for i in self.valid_cat_inds: data_iter_dict[i] = RandomCycleIter(self.cat_dict[i], generator=g) def gen_cat_img_inds(cls_list, data_dict, num_sample_cls): """Traverse the categories and extract `num_sample_cls` image indexes of the corresponding categories one by one.""" id_indices = [] for _ in range(len(cls_list)): cls_idx = next(cls_list) for _ in range(num_sample_cls): id = next(data_dict[cls_idx]) id_indices.append(id) return id_indices # deterministically shuffle based on epoch num_bins = int( math.ceil(self.total_size * 1.0 / self.num_classes / self.num_sample_class)) indices = [] for i in range(num_bins): indices += gen_cat_img_inds(label_iter_list, data_iter_dict, self.num_sample_class) # fix extra samples to make it evenly divisible if len(indices) >= self.total_size: indices = indices[:self.total_size] else: indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch class RandomCycleIter: """Shuffle the list and do it again after the list have traversed. The implementation logic is referred to https://github.com/wutong16/DistributionBalancedLoss/blob/master/mllt/datasets/loader/sampler.py Example: >>> label_list = [0, 1, 2, 4, 5] >>> g = torch.Generator() >>> g.manual_seed(0) >>> label_iter_list = RandomCycleIter(label_list, generator=g) >>> index = next(label_iter_list) Args: data (list or ndarray): The data that needs to be shuffled. generator: An torch.Generator object, which is used in setting the seed for generating random numbers. """ # noqa: W605 def __init__(self, data, generator=None): self.data = data self.length = len(data) self.index = torch.randperm(self.length, generator=generator).numpy() self.i = 0 self.generator = generator def __iter__(self): return self def __len__(self): return len(self.data) def __next__(self): if self.i == self.length: self.index = torch.randperm( self.length, generator=self.generator).numpy() self.i = 0 idx = self.data[self.index[self.i]] self.i += 1 return idx