# Copyright (c) OpenMMLab. All rights reserved. import math import numpy as np import torch from mmcv.runner import get_dist_info from torch.utils.data import Sampler class GroupSampler(Sampler): def __init__(self, dataset, samples_per_gpu=1): assert hasattr(dataset, 'flag') self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.flag = dataset.flag.astype(np.int64) self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, size in enumerate(self.group_sizes): self.num_samples += int(np.ceil( size / self.samples_per_gpu)) * self.samples_per_gpu def __iter__(self): indices = [] for i, size in enumerate(self.group_sizes): if size == 0: continue indice = np.where(self.flag == i)[0] assert len(indice) == size np.random.shuffle(indice) num_extra = int(np.ceil(size / self.samples_per_gpu) ) * self.samples_per_gpu - len(indice) indice = np.concatenate( [indice, np.random.choice(indice, num_extra)]) indices.append(indice) indices = np.concatenate(indices) indices = [ indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] for i in np.random.permutation( range(len(indices) // self.samples_per_gpu)) ] indices = np.concatenate(indices) indices = indices.astype(np.int64).tolist() assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples class DistributedGroupSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. seed (int, optional): random seed used to shuffle the sampler if ``shuffle=True``. This number should be identical across all processes in the distributed group. Default: 0. """ def __init__(self, dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=0): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.seed = seed if seed is not None else 0 assert hasattr(self.dataset, 'flag') self.flag = self.dataset.flag self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, j in enumerate(self.group_sizes): self.num_samples += int( math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / self.num_replicas)) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = [] for i, size in enumerate(self.group_sizes): if size > 0: indice = np.where(self.flag == i)[0] assert len(indice) == size # add .numpy() to avoid bug when selecting indice in parrots. # TODO: check whether torch.randperm() can be replaced by # numpy.random.permutation(). indice = indice[list( torch.randperm(int(size), generator=g).numpy())].tolist() extra = int( math.ceil( size * 1.0 / self.samples_per_gpu / self.num_replicas) ) * self.samples_per_gpu * self.num_replicas - len(indice) # pad indice tmp = indice.copy() for _ in range(extra // size): indice.extend(tmp) indice.extend(tmp[:extra % size]) indices.extend(indice) assert len(indices) == self.total_size indices = [ indices[j] for i in list( torch.randperm( len(indices) // self.samples_per_gpu, generator=g)) for j in range(i * self.samples_per_gpu, (i + 1) * self.samples_per_gpu) ] # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch