rockeycoss commited on
Commit
369d2ad
·
1 Parent(s): d8c32ac

add r50 and swin configs

Browse files
projects/configs/hdetr/r50-hdetr_sam-vit-b.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = [
2
+ '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
3
+ ]
4
+
5
+ plugin = True
6
+ plugin_dir = 'projects/instance_segment_anything/'
7
+
8
+ model = dict(
9
+ type='DetWrapperInstanceSAM',
10
+ det_wrapper_type='hdetr',
11
+ det_wrapper_cfg=dict(aux_loss=True,
12
+ backbone='resnet50',
13
+ num_classes=91,
14
+ cache_mode=False,
15
+ dec_layers=6,
16
+ dec_n_points=4,
17
+ dilation=False,
18
+ dim_feedforward=2048,
19
+ drop_path_rate=0.2,
20
+ dropout=0.0,
21
+ enc_layers=6,
22
+ enc_n_points=4,
23
+ focal_alpha=0.25,
24
+ frozen_weights=None,
25
+ hidden_dim=256,
26
+ k_one2many=6,
27
+ lambda_one2many=1.0,
28
+ look_forward_twice=True,
29
+ masks=False,
30
+ mixed_selection=True,
31
+ nheads=8,
32
+ num_feature_levels=4,
33
+ num_queries_one2many=1500,
34
+ num_queries_one2one=300,
35
+ position_embedding='sine',
36
+ position_embedding_scale=6.283185307179586,
37
+ remove_difficult=False,
38
+ topk=100,
39
+ two_stage=True,
40
+ use_checkpoint=False,
41
+ use_fp16=False,
42
+ with_box_refine=True),
43
+ det_model_ckpt='ckpt/r50_hdetr.pth',
44
+ num_classes=80,
45
+ model_type='vit_b',
46
+ sam_checkpoint='ckpt/sam_vit_b_01ec64.pth',
47
+ use_sam_iou=True,
48
+ )
49
+ img_norm_cfg = dict(
50
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
51
+ # test_pipeline, NOTE the Pad's size_divisor is different from the default
52
+ # setting (size_divisor=32). While there is little effect on the performance
53
+ # whether we use the default setting or use size_divisor=1.
54
+
55
+ test_pipeline = [
56
+ dict(type='LoadImageFromFile'),
57
+ dict(
58
+ type='MultiScaleFlipAug',
59
+ img_scale=(1333, 800),
60
+ flip=False,
61
+ transforms=[
62
+ dict(type='Resize', keep_ratio=True),
63
+ dict(type='RandomFlip'),
64
+ dict(type='Normalize', **img_norm_cfg),
65
+ dict(type='Pad', size_divisor=1),
66
+ dict(type='ImageToTensor', keys=['img']),
67
+ dict(type='Collect', keys=['img'])
68
+ ])
69
+ ]
70
+
71
+ dataset_type = 'CocoDataset'
72
+ data_root = 'data/coco/'
73
+
74
+ data = dict(
75
+ samples_per_gpu=1,
76
+ workers_per_gpu=1,
77
+ test=dict(
78
+ type=dataset_type,
79
+ ann_file=data_root + 'annotations/instances_val2017.json',
80
+ img_prefix=data_root + 'val2017/',
81
+ pipeline=test_pipeline))
projects/configs/hdetr/r50-hdetr_sam-vit-l.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = [
2
+ '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
3
+ ]
4
+
5
+ plugin = True
6
+ plugin_dir = 'projects/instance_segment_anything/'
7
+
8
+ model = dict(
9
+ type='DetWrapperInstanceSAM',
10
+ det_wrapper_type='hdetr',
11
+ det_wrapper_cfg=dict(aux_loss=True,
12
+ backbone='resnet50',
13
+ num_classes=91,
14
+ cache_mode=False,
15
+ dec_layers=6,
16
+ dec_n_points=4,
17
+ dilation=False,
18
+ dim_feedforward=2048,
19
+ drop_path_rate=0.2,
20
+ dropout=0.0,
21
+ enc_layers=6,
22
+ enc_n_points=4,
23
+ focal_alpha=0.25,
24
+ frozen_weights=None,
25
+ hidden_dim=256,
26
+ k_one2many=6,
27
+ lambda_one2many=1.0,
28
+ look_forward_twice=True,
29
+ masks=False,
30
+ mixed_selection=True,
31
+ nheads=8,
32
+ num_feature_levels=4,
33
+ num_queries_one2many=1500,
34
+ num_queries_one2one=300,
35
+ position_embedding='sine',
36
+ position_embedding_scale=6.283185307179586,
37
+ remove_difficult=False,
38
+ topk=100,
39
+ two_stage=True,
40
+ use_checkpoint=False,
41
+ use_fp16=False,
42
+ with_box_refine=True),
43
+ det_model_ckpt='ckpt/r50_hdetr.pth',
44
+ num_classes=80,
45
+ model_type='vit_l',
46
+ sam_checkpoint='ckpt/sam_vit_l_0b3195.pth',
47
+ use_sam_iou=True,
48
+ )
49
+ img_norm_cfg = dict(
50
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
51
+ # test_pipeline, NOTE the Pad's size_divisor is different from the default
52
+ # setting (size_divisor=32). While there is little effect on the performance
53
+ # whether we use the default setting or use size_divisor=1.
54
+
55
+ test_pipeline = [
56
+ dict(type='LoadImageFromFile'),
57
+ dict(
58
+ type='MultiScaleFlipAug',
59
+ img_scale=(1333, 800),
60
+ flip=False,
61
+ transforms=[
62
+ dict(type='Resize', keep_ratio=True),
63
+ dict(type='RandomFlip'),
64
+ dict(type='Normalize', **img_norm_cfg),
65
+ dict(type='Pad', size_divisor=1),
66
+ dict(type='ImageToTensor', keys=['img']),
67
+ dict(type='Collect', keys=['img'])
68
+ ])
69
+ ]
70
+
71
+ dataset_type = 'CocoDataset'
72
+ data_root = 'data/coco/'
73
+
74
+ data = dict(
75
+ samples_per_gpu=1,
76
+ workers_per_gpu=1,
77
+ test=dict(
78
+ type=dataset_type,
79
+ ann_file=data_root + 'annotations/instances_val2017.json',
80
+ img_prefix=data_root + 'val2017/',
81
+ pipeline=test_pipeline))
projects/configs/hdetr/swin-t-hdetr_sam-vit-b.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = [
2
+ '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
3
+ ]
4
+
5
+ plugin = True
6
+ plugin_dir = 'projects/instance_segment_anything/'
7
+
8
+ model = dict(
9
+ type='DetWrapperInstanceSAM',
10
+ det_wrapper_type='hdetr',
11
+ det_wrapper_cfg=dict(aux_loss=True,
12
+ backbone='swin_tiny',
13
+ num_classes=91,
14
+ cache_mode=False,
15
+ dec_layers=6,
16
+ dec_n_points=4,
17
+ dilation=False,
18
+ dim_feedforward=2048,
19
+ drop_path_rate=0.2,
20
+ dropout=0.0,
21
+ enc_layers=6,
22
+ enc_n_points=4,
23
+ focal_alpha=0.25,
24
+ frozen_weights=None,
25
+ hidden_dim=256,
26
+ k_one2many=6,
27
+ lambda_one2many=1.0,
28
+ look_forward_twice=True,
29
+ masks=False,
30
+ mixed_selection=True,
31
+ nheads=8,
32
+ num_feature_levels=4,
33
+ num_queries_one2many=1500,
34
+ num_queries_one2one=300,
35
+ position_embedding='sine',
36
+ position_embedding_scale=6.283185307179586,
37
+ remove_difficult=False,
38
+ topk=100,
39
+ two_stage=True,
40
+ use_checkpoint=False,
41
+ use_fp16=False,
42
+ with_box_refine=True),
43
+ det_model_ckpt='ckpt/swin_t_hdetr.pth',
44
+ num_classes=80,
45
+ model_type='vit_b',
46
+ sam_checkpoint='ckpt/sam_vit_b_01ec64.pth',
47
+ use_sam_iou=True,
48
+ )
49
+ img_norm_cfg = dict(
50
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
51
+ # test_pipeline, NOTE the Pad's size_divisor is different from the default
52
+ # setting (size_divisor=32). While there is little effect on the performance
53
+ # whether we use the default setting or use size_divisor=1.
54
+
55
+ test_pipeline = [
56
+ dict(type='LoadImageFromFile'),
57
+ dict(
58
+ type='MultiScaleFlipAug',
59
+ img_scale=(1333, 800),
60
+ flip=False,
61
+ transforms=[
62
+ dict(type='Resize', keep_ratio=True),
63
+ dict(type='RandomFlip'),
64
+ dict(type='Normalize', **img_norm_cfg),
65
+ dict(type='Pad', size_divisor=1),
66
+ dict(type='ImageToTensor', keys=['img']),
67
+ dict(type='Collect', keys=['img'])
68
+ ])
69
+ ]
70
+
71
+ dataset_type = 'CocoDataset'
72
+ data_root = 'data/coco/'
73
+
74
+ data = dict(
75
+ samples_per_gpu=1,
76
+ workers_per_gpu=1,
77
+ test=dict(
78
+ type=dataset_type,
79
+ ann_file=data_root + 'annotations/instances_val2017.json',
80
+ img_prefix=data_root + 'val2017/',
81
+ pipeline=test_pipeline))
projects/configs/hdetr/swin-t-hdetr_sam-vit-l.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = [
2
+ '../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
3
+ ]
4
+
5
+ plugin = True
6
+ plugin_dir = 'projects/instance_segment_anything/'
7
+
8
+ model = dict(
9
+ type='DetWrapperInstanceSAM',
10
+ det_wrapper_type='hdetr',
11
+ det_wrapper_cfg=dict(aux_loss=True,
12
+ backbone='swin_tiny',
13
+ num_classes=91,
14
+ cache_mode=False,
15
+ dec_layers=6,
16
+ dec_n_points=4,
17
+ dilation=False,
18
+ dim_feedforward=2048,
19
+ drop_path_rate=0.2,
20
+ dropout=0.0,
21
+ enc_layers=6,
22
+ enc_n_points=4,
23
+ focal_alpha=0.25,
24
+ frozen_weights=None,
25
+ hidden_dim=256,
26
+ k_one2many=6,
27
+ lambda_one2many=1.0,
28
+ look_forward_twice=True,
29
+ masks=False,
30
+ mixed_selection=True,
31
+ nheads=8,
32
+ num_feature_levels=4,
33
+ num_queries_one2many=1500,
34
+ num_queries_one2one=300,
35
+ position_embedding='sine',
36
+ position_embedding_scale=6.283185307179586,
37
+ remove_difficult=False,
38
+ topk=100,
39
+ two_stage=True,
40
+ use_checkpoint=False,
41
+ use_fp16=False,
42
+ with_box_refine=True),
43
+ det_model_ckpt='ckpt/swin_t_hdetr.pth',
44
+ num_classes=80,
45
+ model_type='vit_l',
46
+ sam_checkpoint='ckpt/sam_vit_l_0b3195.pth',
47
+ use_sam_iou=True,
48
+ )
49
+ img_norm_cfg = dict(
50
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
51
+ # test_pipeline, NOTE the Pad's size_divisor is different from the default
52
+ # setting (size_divisor=32). While there is little effect on the performance
53
+ # whether we use the default setting or use size_divisor=1.
54
+
55
+ test_pipeline = [
56
+ dict(type='LoadImageFromFile'),
57
+ dict(
58
+ type='MultiScaleFlipAug',
59
+ img_scale=(1333, 800),
60
+ flip=False,
61
+ transforms=[
62
+ dict(type='Resize', keep_ratio=True),
63
+ dict(type='RandomFlip'),
64
+ dict(type='Normalize', **img_norm_cfg),
65
+ dict(type='Pad', size_divisor=1),
66
+ dict(type='ImageToTensor', keys=['img']),
67
+ dict(type='Collect', keys=['img'])
68
+ ])
69
+ ]
70
+
71
+ dataset_type = 'CocoDataset'
72
+ data_root = 'data/coco/'
73
+
74
+ data = dict(
75
+ samples_per_gpu=1,
76
+ workers_per_gpu=1,
77
+ test=dict(
78
+ type=dataset_type,
79
+ ann_file=data_root + 'annotations/instances_val2017.json',
80
+ img_prefix=data_root + 'val2017/',
81
+ pipeline=test_pipeline))