RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm,
normal_init)
from mmcv.runner import force_fp32
from mmdet.core import anchor_inside_flags, multi_apply, reduce_mean, unmap
from ..builder import HEADS
from .anchor_head import AnchorHead
INF = 1e8
def levels_to_images(mlvl_tensor):
"""Concat multi-level feature maps by image.
[feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
(N, H*W , C), then split the element to N elements with shape (H*W, C), and
concat elements in same image of all level along first dimension.
Args:
mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
corresponding level. Each element is of shape (N, C, H, W)
Returns:
list[torch.Tensor]: A list that contains N tensors and each tensor is
of shape (num_elements, C)
"""
batch_size = mlvl_tensor[0].size(0)
batch_list = [[] for _ in range(batch_size)]
channels = mlvl_tensor[0].size(1)
for t in mlvl_tensor:
t = t.permute(0, 2, 3, 1)
t = t.view(batch_size, -1, channels).contiguous()
for img in range(batch_size):
batch_list[img].append(t[img])
return [torch.cat(item, 0) for item in batch_list]
@HEADS.register_module()
class YOLOFHead(AnchorHead):
"""YOLOFHead Paper link: https://arxiv.org/abs/2103.09460.
Args:
num_classes (int): The number of object classes (w/o background)
in_channels (List[int]): The number of input channels per scale.
cls_num_convs (int): The number of convolutions of cls branch.
Default 2.
reg_num_convs (int): The number of convolutions of reg branch.
Default 4.
norm_cfg (dict): Dictionary to construct and config norm layer.
"""
def __init__(self,
num_classes,
in_channels,
num_cls_convs=2,
num_reg_convs=4,
norm_cfg=dict(type='BN', requires_grad=True),
**kwargs):
self.num_cls_convs = num_cls_convs
self.num_reg_convs = num_reg_convs
self.norm_cfg = norm_cfg
super(YOLOFHead, self).__init__(num_classes, in_channels, **kwargs)
def _init_layers(self):
cls_subnet = []
bbox_subnet = []
for i in range(self.num_cls_convs):
cls_subnet.append(
ConvModule(
self.in_channels,
self.in_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg))
for i in range(self.num_reg_convs):
bbox_subnet.append(
ConvModule(
self.in_channels,
self.in_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg))
self.cls_subnet = nn.Sequential(*cls_subnet)
self.bbox_subnet = nn.Sequential(*bbox_subnet)
self.cls_score = nn.Conv2d(
self.in_channels,
self.num_base_priors * self.num_classes,
kernel_size=3,
stride=1,
padding=1)
self.bbox_pred = nn.Conv2d(
self.in_channels,
self.num_base_priors * 4,
kernel_size=3,
stride=1,
padding=1)
self.object_pred = nn.Conv2d(
self.in_channels,
self.num_base_priors,
kernel_size=3,
stride=1,
padding=1)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
# Use prior in model initialization to improve stability
bias_cls = bias_init_with_prob(0.01)
torch.nn.init.constant_(self.cls_score.bias, bias_cls)
def forward_single(self, feature):
cls_score = self.cls_score(self.cls_subnet(feature))
N, _, H, W = cls_score.shape
cls_score = cls_score.view(N, -1, self.num_classes, H, W)
reg_feat = self.bbox_subnet(feature)
bbox_reg = self.bbox_pred(reg_feat)
objectness = self.object_pred(reg_feat)
# implicit objectness
objectness = objectness.view(N, -1, 1, H, W)
normalized_cls_score = cls_score + objectness - torch.log(
1. + torch.clamp(cls_score.exp(), max=INF) +
torch.clamp(objectness.exp(), max=INF))
normalized_cls_score = normalized_cls_score.view(N, -1, H, W)
return normalized_cls_score, bbox_reg
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (batch, num_anchors * num_classes, h, w)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (batch, num_anchors * 4, h, w)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss. Default: None
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == 1
assert self.prior_generator.num_levels == 1
device = cls_scores[0].device
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
# The output level is always 1
anchor_list = [anchors[0] for anchors in anchor_list]
valid_flag_list = [valid_flags[0] for valid_flags in valid_flag_list]
cls_scores_list = levels_to_images(cls_scores)
bbox_preds_list = levels_to_images(bbox_preds)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
cls_scores_list,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(batch_labels, batch_label_weights, num_total_pos, num_total_neg,
batch_bbox_weights, batch_pos_predicted_boxes,
batch_target_boxes) = cls_reg_targets
flatten_labels = batch_labels.reshape(-1)
batch_label_weights = batch_label_weights.reshape(-1)
cls_score = cls_scores[0].permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
num_total_samples = (num_total_pos +
num_total_neg) if self.sampling else num_total_pos
num_total_samples = reduce_mean(
cls_score.new_tensor(num_total_samples)).clamp_(1.0).item()
# classification loss
loss_cls = self.loss_cls(
cls_score,
flatten_labels,
batch_label_weights,
avg_factor=num_total_samples)
# regression loss
if batch_pos_predicted_boxes.shape[0] == 0:
# no pos sample
loss_bbox = batch_pos_predicted_boxes.sum() * 0
else:
loss_bbox = self.loss_bbox(
batch_pos_predicted_boxes,
batch_target_boxes,
batch_bbox_weights.float(),
avg_factor=num_total_samples)
return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)
def get_targets(self,
cls_scores_list,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
cls_scores_list (list[Tensor]): Classification scores of
each image. each is a 4D-tensor, the shape is
(h * w, num_anchors * num_classes).
bbox_preds_list (list[Tensor]): Bbox preds of each image.
each is a 4D-tensor, the shape is (h * w, num_anchors * 4).
anchor_list (list[Tensor]): Anchors of each image. Each element of
is a tensor of shape (h * w * num_anchors, 4).
valid_flag_list (list[Tensor]): Valid flags of each image. Each
element of is a tensor of shape (h * w * num_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: Usually returns a tuple containing learning targets.
- batch_labels (Tensor): Label of all images. Each element \
of is a tensor of shape (batch, h * w * num_anchors)
- batch_label_weights (Tensor): Label weights of all images \
of is a tensor of shape (batch, h * w * num_anchors)
- num_total_pos (int): Number of positive samples in all \
images.
- num_total_neg (int): Number of negative samples in all \
images.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end
"""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
results = multi_apply(
self._get_targets_single,
bbox_preds_list,
anchor_list,
valid_flag_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
(all_labels, all_label_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = results[:5]
rest_results = list(results[5:]) # user-added return values
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
batch_labels = torch.stack(all_labels, 0)
batch_label_weights = torch.stack(all_label_weights, 0)
res = (batch_labels, batch_label_weights, num_total_pos, num_total_neg)
for i, rests in enumerate(rest_results): # user-added return values
rest_results[i] = torch.cat(rests, 0)
return res + tuple(rest_results)
def _get_targets_single(self,
bbox_preds,
flat_anchors,
valid_flags,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in a
single image.
Args:
bbox_preds (Tensor): Bbox prediction of the image, which
shape is (h * w ,4)
flat_anchors (Tensor): Anchors of the image, which shape is
(h * w * num_anchors ,4)
valid_flags (Tensor): Valid flags of the image, which shape is
(h * w * num_anchors,).
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
img_meta (dict): Meta info of the image.
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple:
labels (Tensor): Labels of image, which shape is
(h * w * num_anchors, ).
label_weights (Tensor): Label weights of image, which shape is
(h * w * num_anchors, ).
pos_inds (Tensor): Pos index of image.
neg_inds (Tensor): Neg index of image.
sampling_result (obj:`SamplingResult`): Sampling result.
pos_bbox_weights (Tensor): The Weight of using to calculate
the bbox branch loss, which shape is (num, ).
pos_predicted_boxes (Tensor): boxes predicted value of
using to calculate the bbox branch loss, which shape is
(num, 4).
pos_target_boxes (Tensor): boxes target value of
using to calculate the bbox branch loss, which shape is
(num, 4).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg.allowed_border)
if not inside_flags.any():
return (None, ) * 8
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
bbox_preds = bbox_preds.reshape(-1, 4)
bbox_preds = bbox_preds[inside_flags, :]
# decoded bbox
decoder_bbox_preds = self.bbox_coder.decode(anchors, bbox_preds)
assign_result = self.assigner.assign(
decoder_bbox_preds, anchors, gt_bboxes, gt_bboxes_ignore,
None if self.sampling else gt_labels)
pos_bbox_weights = assign_result.get_extra_property('pos_idx')
pos_predicted_boxes = assign_result.get_extra_property(
'pos_predicted_boxes')
pos_target_boxes = assign_result.get_extra_property('target_boxes')
sampling_result = self.sampler.sample(assign_result, anchors,
gt_bboxes)
num_valid_anchors = anchors.shape[0]
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
if gt_labels is None:
# Only rpn gives gt_labels as None
# Foreground is the first class since v2.5.0
labels[pos_inds] = 0
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
labels = unmap(
labels, num_total_anchors, inside_flags,
fill=self.num_classes) # fill bg label
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
return (labels, label_weights, pos_inds, neg_inds, sampling_result,
pos_bbox_weights, pos_predicted_boxes, pos_target_boxes)