RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
import torch
from mmcv.cnn.utils.weight_init import constant_init
from mmcv.ops import batched_nms
from mmcv.runner import BaseModule, force_fp32
from mmdet.core.utils import filter_scores_and_topk, select_single_mlvl
class BaseDenseHead(BaseModule, metaclass=ABCMeta):
"""Base class for DenseHeads."""
def __init__(self, init_cfg=None):
super(BaseDenseHead, self).__init__(init_cfg)
def init_weights(self):
super(BaseDenseHead, self).init_weights()
# avoid init_cfg overwrite the initialization of `conv_offset`
for m in self.modules():
# DeformConv2dPack, ModulatedDeformConv2dPack
if hasattr(m, 'conv_offset'):
constant_init(m.conv_offset, 0)
@abstractmethod
def loss(self, **kwargs):
"""Compute losses of the head."""
pass
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def get_bboxes(self,
cls_scores,
bbox_preds,
score_factors=None,
img_metas=None,
cfg=None,
rescale=False,
with_nms=True,
**kwargs):
"""Transform network outputs of a batch into bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], Optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, num_priors * 1, H, W). Default None.
img_metas (list[dict], Optional): Image meta info. Default None.
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
if None, test_cfg would be used. Default None.
rescale (bool): If True, return boxes in original image space.
Default False.
with_nms (bool): If True, do nms before return boxes.
Default True.
Returns:
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1. The second item is a
(n,) tensor where each item is the predicted class label of
the corresponding box.
"""
assert len(cls_scores) == len(bbox_preds)
if score_factors is None:
# e.g. Retina, FreeAnchor, Foveabox, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
with_score_factors = True
assert len(cls_scores) == len(score_factors)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
result_list = []
for img_id in range(len(img_metas)):
img_meta = img_metas[img_id]
cls_score_list = select_single_mlvl(cls_scores, img_id)
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
if with_score_factors:
score_factor_list = select_single_mlvl(score_factors, img_id)
else:
score_factor_list = [None for _ in range(num_levels)]
results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
score_factor_list, mlvl_priors,
img_meta, cfg, rescale, with_nms,
**kwargs)
result_list.append(results)
return result_list
def _get_bboxes_single(self,
cls_score_list,
bbox_pred_list,
score_factor_list,
mlvl_priors,
img_meta,
cfg,
rescale=False,
with_nms=True,
**kwargs):
"""Transform outputs of a single image into bbox predictions.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image, each item has shape
(num_priors * 1, H, W).
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid. In all
anchor-based methods, it has shape (num_priors, 4). In
all anchor-free methods, it has shape (num_priors, 2)
when `with_stride=True`, otherwise it still has shape
(num_priors, 4).
img_meta (dict): Image meta info.
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
Returns:
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
is False and mlvl_score_factor is None, return mlvl_bboxes and
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
mlvl_score_factor. Usually with_nms is False is used for aug
test. If with_nms is True, then return the following format
- det_bboxes (Tensor): Predicted bboxes with shape \
[num_bboxes, 5], where the first 4 columns are bounding \
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
column are scores between 0 and 1.
- det_labels (Tensor): Predicted labels of the corresponding \
box with shape [num_bboxes].
"""
if score_factor_list[0] is None:
# e.g. Retina, FreeAnchor, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
cfg = self.test_cfg if cfg is None else cfg
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_labels = []
if with_score_factors:
mlvl_score_factors = []
else:
mlvl_score_factors = None
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
enumerate(zip(cls_score_list, bbox_pred_list,
score_factor_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
if with_score_factors:
score_factor = score_factor.permute(1, 2,
0).reshape(-1).sigmoid()
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, keep_idxs, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
if with_score_factors:
score_factor = score_factor[keep_idxs]
bboxes = self.bbox_coder.decode(
priors, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
if with_score_factors:
mlvl_score_factors.append(score_factor)
return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes,
img_meta['scale_factor'], cfg, rescale,
with_nms, mlvl_score_factors, **kwargs)
def _bbox_post_process(self,
mlvl_scores,
mlvl_labels,
mlvl_bboxes,
scale_factor,
cfg,
rescale=False,
with_nms=True,
mlvl_score_factors=None,
**kwargs):
"""bbox post-processing method.
The boxes would be rescaled to the original image scale and do
the nms operation. Usually `with_nms` is False is used for aug test.
Args:
mlvl_scores (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_bboxes, ).
mlvl_labels (list[Tensor]): Box class labels from all scale
levels of a single image, each item has shape
(num_bboxes, ).
mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
levels of a single image, each item has shape (num_bboxes, 4).
scale_factor (ndarray, optional): Scale factor of the image arange
as (w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
mlvl_score_factors (list[Tensor], optional): Score factor from
all scale levels of a single image, each item has shape
(num_bboxes, ). Default: None.
Returns:
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
is False and mlvl_score_factor is None, return mlvl_bboxes and
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
mlvl_score_factor. Usually with_nms is False is used for aug
test. If with_nms is True, then return the following format
- det_bboxes (Tensor): Predicted bboxes with shape \
[num_bboxes, 5], where the first 4 columns are bounding \
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
column are scores between 0 and 1.
- det_labels (Tensor): Predicted labels of the corresponding \
box with shape [num_bboxes].
"""
assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
mlvl_labels = torch.cat(mlvl_labels)
if mlvl_score_factors is not None:
# TODO: Add sqrt operation in order to be consistent with
# the paper.
mlvl_score_factors = torch.cat(mlvl_score_factors)
mlvl_scores = mlvl_scores * mlvl_score_factors
if with_nms:
if mlvl_bboxes.numel() == 0:
det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1)
return det_bboxes, mlvl_labels
det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores,
mlvl_labels, cfg.nms)
det_bboxes = det_bboxes[:cfg.max_per_img]
det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img]
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores, mlvl_labels
def forward_train(self,
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=None,
proposal_cfg=None,
**kwargs):
"""
Args:
x (list[Tensor]): Features from FPN.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used
Returns:
tuple:
losses: (dict[str, Tensor]): A dictionary of loss components.
proposal_list (list[Tensor]): Proposals of each image.
"""
outs = self(x)
if gt_labels is None:
loss_inputs = outs + (gt_bboxes, img_metas)
else:
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
if proposal_cfg is None:
return losses
else:
proposal_list = self.get_bboxes(
*outs, img_metas=img_metas, cfg=proposal_cfg)
return losses, proposal_list
def simple_test(self, feats, img_metas, rescale=False):
"""Test function without test-time augmentation.
Args:
feats (tuple[torch.Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is ``bboxes`` with shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
The shape of the second tensor in the tuple is ``labels``
with shape (n, ).
"""
return self.simple_test_bboxes(feats, img_metas, rescale=rescale)
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def onnx_export(self,
cls_scores,
bbox_preds,
score_factors=None,
img_metas=None,
with_nms=True):
"""Transform network output for a batch into bbox predictions.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
with shape (N, num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_points * 4, H, W).
score_factors (list[Tensor]): score_factors for each s
cale level with shape (N, num_points * 1, H, W).
Default: None.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc. Default: None.
with_nms (bool): Whether apply nms to the bboxes. Default: True.
Returns:
tuple[Tensor, Tensor] | list[tuple]: When `with_nms` is True,
it is tuple[Tensor, Tensor], first tensor bboxes with shape
[N, num_det, 5], 5 arrange as (x1, y1, x2, y2, score)
and second element is class labels of shape [N, num_det].
When `with_nms` is False, first tensor is bboxes with
shape [N, num_det, 4], second tensor is raw score has
shape [N, num_det, num_classes].
"""
assert len(cls_scores) == len(bbox_preds)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=bbox_preds[0].dtype,
device=bbox_preds[0].device)
mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)]
mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)]
assert len(
img_metas
) == 1, 'Only support one input image while in exporting to ONNX'
img_shape = img_metas[0]['img_shape_for_onnx']
cfg = self.test_cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors)
device = cls_scores[0].device
batch_size = cls_scores[0].shape[0]
# convert to tensor to keep tracing
nms_pre_tensor = torch.tensor(
cfg.get('nms_pre', -1), device=device, dtype=torch.long)
# e.g. Retina, FreeAnchor, etc.
if score_factors is None:
with_score_factors = False
mlvl_score_factor = [None for _ in range(num_levels)]
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
mlvl_score_factor = [
score_factors[i].detach() for i in range(num_levels)
]
mlvl_score_factors = []
mlvl_batch_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, score_factors, priors in zip(
mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor,
mlvl_priors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(0, 2, 3,
1).reshape(batch_size, -1,
self.cls_out_channels)
if self.use_sigmoid_cls:
scores = scores.sigmoid()
nms_pre_score = scores
else:
scores = scores.softmax(-1)
nms_pre_score = scores
if with_score_factors:
score_factors = score_factors.permute(0, 2, 3, 1).reshape(
batch_size, -1).sigmoid()
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(batch_size, -1, 4)
priors = priors.expand(batch_size, -1, priors.size(-1))
# Get top-k predictions
from mmdet.core.export import get_k_for_topk
nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1])
if nms_pre > 0:
if with_score_factors:
nms_pre_score = (nms_pre_score * score_factors[..., None])
else:
nms_pre_score = nms_pre_score
# Get maximum scores for foreground classes.
if self.use_sigmoid_cls:
max_scores, _ = nms_pre_score.max(-1)
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
max_scores, _ = nms_pre_score[..., :-1].max(-1)
_, topk_inds = max_scores.topk(nms_pre)
batch_inds = torch.arange(
batch_size, device=bbox_pred.device).view(
-1, 1).expand_as(topk_inds).long()
# Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
transformed_inds = bbox_pred.shape[1] * batch_inds + topk_inds
priors = priors.reshape(
-1, priors.size(-1))[transformed_inds, :].reshape(
batch_size, -1, priors.size(-1))
bbox_pred = bbox_pred.reshape(-1,
4)[transformed_inds, :].reshape(
batch_size, -1, 4)
scores = scores.reshape(
-1, self.cls_out_channels)[transformed_inds, :].reshape(
batch_size, -1, self.cls_out_channels)
if with_score_factors:
score_factors = score_factors.reshape(
-1, 1)[transformed_inds].reshape(batch_size, -1)
bboxes = self.bbox_coder.decode(
priors, bbox_pred, max_shape=img_shape)
mlvl_batch_bboxes.append(bboxes)
mlvl_scores.append(scores)
if with_score_factors:
mlvl_score_factors.append(score_factors)
batch_bboxes = torch.cat(mlvl_batch_bboxes, dim=1)
batch_scores = torch.cat(mlvl_scores, dim=1)
if with_score_factors:
batch_score_factors = torch.cat(mlvl_score_factors, dim=1)
# Replace multiclass_nms with ONNX::NonMaxSuppression in deployment
from mmdet.core.export import add_dummy_nms_for_onnx
if not self.use_sigmoid_cls:
batch_scores = batch_scores[..., :self.num_classes]
if with_score_factors:
batch_scores = batch_scores * (batch_score_factors.unsqueeze(2))
if with_nms:
max_output_boxes_per_class = cfg.nms.get(
'max_output_boxes_per_class', 200)
iou_threshold = cfg.nms.get('iou_threshold', 0.5)
score_threshold = cfg.score_thr
nms_pre = cfg.get('deploy_nms_pre', -1)
return add_dummy_nms_for_onnx(batch_bboxes, batch_scores,
max_output_boxes_per_class,
iou_threshold, score_threshold,
nms_pre, cfg.max_per_img)
else:
return batch_bboxes, batch_scores