Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import sys | |
from inspect import signature | |
import torch | |
from mmcv.ops import batched_nms | |
from mmdet.core import bbox_mapping_back, merge_aug_proposals | |
if sys.version_info >= (3, 7): | |
from mmdet.utils.contextmanagers import completed | |
class BBoxTestMixin(object): | |
"""Mixin class for testing det bboxes via DenseHead.""" | |
def simple_test_bboxes(self, feats, img_metas, rescale=False): | |
"""Test det bboxes without test-time augmentation, can be applied in | |
DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``, | |
etc. | |
Args: | |
feats (tuple[torch.Tensor]): Multi-level features from the | |
upstream network, each is a 4D-tensor. | |
img_metas (list[dict]): List of image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is ``bboxes`` with shape (n, 5), | |
where 5 represent (tl_x, tl_y, br_x, br_y, score). | |
The shape of the second tensor in the tuple is ``labels`` | |
with shape (n,) | |
""" | |
outs = self.forward(feats) | |
results_list = self.get_bboxes( | |
*outs, img_metas=img_metas, rescale=rescale) | |
return results_list | |
def aug_test_bboxes(self, feats, img_metas, rescale=False): | |
"""Test det bboxes with test time augmentation, can be applied in | |
DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``, | |
etc. | |
Args: | |
feats (list[Tensor]): the outer list indicates test-time | |
augmentations and inner Tensor should have a shape NxCxHxW, | |
which contains features for all images in the batch. | |
img_metas (list[list[dict]]): the outer list indicates test-time | |
augs (multiscale, flip, etc.) and the inner list indicates | |
images in a batch. each dict has image information. | |
rescale (bool, optional): Whether to rescale the results. | |
Defaults to False. | |
Returns: | |
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. | |
The first item is ``bboxes`` with shape (n, 5), | |
where 5 represent (tl_x, tl_y, br_x, br_y, score). | |
The shape of the second tensor in the tuple is ``labels`` | |
with shape (n,). The length of list should always be 1. | |
""" | |
# check with_nms argument | |
gb_sig = signature(self.get_bboxes) | |
gb_args = [p.name for p in gb_sig.parameters.values()] | |
gbs_sig = signature(self._get_bboxes_single) | |
gbs_args = [p.name for p in gbs_sig.parameters.values()] | |
assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \ | |
f'{self.__class__.__name__}' \ | |
' does not support test-time augmentation' | |
aug_bboxes = [] | |
aug_scores = [] | |
aug_labels = [] | |
for x, img_meta in zip(feats, img_metas): | |
# only one image in the batch | |
outs = self.forward(x) | |
bbox_outputs = self.get_bboxes( | |
*outs, | |
img_metas=img_meta, | |
cfg=self.test_cfg, | |
rescale=False, | |
with_nms=False)[0] | |
aug_bboxes.append(bbox_outputs[0]) | |
aug_scores.append(bbox_outputs[1]) | |
if len(bbox_outputs) >= 3: | |
aug_labels.append(bbox_outputs[2]) | |
# after merging, bboxes will be rescaled to the original image size | |
merged_bboxes, merged_scores = self.merge_aug_bboxes( | |
aug_bboxes, aug_scores, img_metas) | |
merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None | |
if merged_bboxes.numel() == 0: | |
det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1) | |
return [ | |
(det_bboxes, merged_labels), | |
] | |
det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores, | |
merged_labels, self.test_cfg.nms) | |
det_bboxes = det_bboxes[:self.test_cfg.max_per_img] | |
det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img] | |
if rescale: | |
_det_bboxes = det_bboxes | |
else: | |
_det_bboxes = det_bboxes.clone() | |
_det_bboxes[:, :4] *= det_bboxes.new_tensor( | |
img_metas[0][0]['scale_factor']) | |
return [ | |
(_det_bboxes, det_labels), | |
] | |
def simple_test_rpn(self, x, img_metas): | |
"""Test without augmentation, only for ``RPNHead`` and its variants, | |
e.g., ``GARPNHead``, etc. | |
Args: | |
x (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
img_metas (list[dict]): Meta info of each image. | |
Returns: | |
list[Tensor]: Proposals of each image, each item has shape (n, 5), | |
where 5 represent (tl_x, tl_y, br_x, br_y, score). | |
""" | |
rpn_outs = self(x) | |
proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas) | |
return proposal_list | |
def aug_test_rpn(self, feats, img_metas): | |
"""Test with augmentation for only for ``RPNHead`` and its variants, | |
e.g., ``GARPNHead``, etc. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
img_metas (list[dict]): Meta info of each image. | |
Returns: | |
list[Tensor]: Proposals of each image, each item has shape (n, 5), | |
where 5 represent (tl_x, tl_y, br_x, br_y, score). | |
""" | |
samples_per_gpu = len(img_metas[0]) | |
aug_proposals = [[] for _ in range(samples_per_gpu)] | |
for x, img_meta in zip(feats, img_metas): | |
proposal_list = self.simple_test_rpn(x, img_meta) | |
for i, proposals in enumerate(proposal_list): | |
aug_proposals[i].append(proposals) | |
# reorganize the order of 'img_metas' to match the dimensions | |
# of 'aug_proposals' | |
aug_img_metas = [] | |
for i in range(samples_per_gpu): | |
aug_img_meta = [] | |
for j in range(len(img_metas)): | |
aug_img_meta.append(img_metas[j][i]) | |
aug_img_metas.append(aug_img_meta) | |
# after merging, proposals will be rescaled to the original image size | |
merged_proposals = [ | |
merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) | |
for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) | |
] | |
return merged_proposals | |
if sys.version_info >= (3, 7): | |
async def async_simple_test_rpn(self, x, img_metas): | |
sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025) | |
async with completed( | |
__name__, 'rpn_head_forward', | |
sleep_interval=sleep_interval): | |
rpn_outs = self(x) | |
proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas) | |
return proposal_list | |
def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas): | |
"""Merge augmented detection bboxes and scores. | |
Args: | |
aug_bboxes (list[Tensor]): shape (n, 4*#class) | |
aug_scores (list[Tensor] or None): shape (n, #class) | |
img_shapes (list[Tensor]): shape (3, ). | |
Returns: | |
tuple[Tensor]: ``bboxes`` with shape (n,4), where | |
4 represent (tl_x, tl_y, br_x, br_y) | |
and ``scores`` with shape (n,). | |
""" | |
recovered_bboxes = [] | |
for bboxes, img_info in zip(aug_bboxes, img_metas): | |
img_shape = img_info[0]['img_shape'] | |
scale_factor = img_info[0]['scale_factor'] | |
flip = img_info[0]['flip'] | |
flip_direction = img_info[0]['flip_direction'] | |
bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, | |
flip_direction) | |
recovered_bboxes.append(bboxes) | |
bboxes = torch.cat(recovered_bboxes, dim=0) | |
if aug_scores is None: | |
return bboxes | |
else: | |
scores = torch.cat(aug_scores, dim=0) | |
return bboxes, scores | |