Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
from pathlib import Path | |
import mmcv | |
import numpy as np | |
import torch | |
from mmcv.ops import RoIPool | |
from mmcv.parallel import collate, scatter | |
from mmcv.runner import load_checkpoint | |
from mmdet.core import get_classes | |
from mmdet.datasets import replace_ImageToTensor | |
from mmdet.datasets.pipelines import Compose | |
from mmdet.models import build_detector | |
def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): | |
"""Initialize a detector from config file. | |
Args: | |
config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, | |
:obj:`Path`, or the config object. | |
checkpoint (str, optional): Checkpoint path. If left as None, the model | |
will not load any weights. | |
cfg_options (dict): Options to override some settings in the used | |
config. | |
Returns: | |
nn.Module: The constructed detector. | |
""" | |
if isinstance(config, (str, Path)): | |
config = mmcv.Config.fromfile(config) | |
elif not isinstance(config, mmcv.Config): | |
raise TypeError('config must be a filename or Config object, ' | |
f'but got {type(config)}') | |
if cfg_options is not None: | |
config.merge_from_dict(cfg_options) | |
if 'pretrained' in config.model: | |
config.model.pretrained = None | |
elif 'init_cfg' in config.model.backbone: | |
config.model.backbone.init_cfg = None | |
config.model.train_cfg = None | |
model = build_detector(config.model, test_cfg=config.get('test_cfg')) | |
if checkpoint is not None: | |
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') | |
if 'CLASSES' in checkpoint.get('meta', {}): | |
model.CLASSES = checkpoint['meta']['CLASSES'] | |
else: | |
warnings.simplefilter('once') | |
warnings.warn('Class names are not saved in the checkpoint\'s ' | |
'meta data, use COCO classes by default.') | |
model.CLASSES = get_classes('coco') | |
model.cfg = config # save the config in the model for convenience | |
model.to(device) | |
model.eval() | |
if device == 'npu': | |
from mmcv.device.npu import NPUDataParallel | |
model = NPUDataParallel(model) | |
model.cfg = config | |
return model | |
class LoadImage: | |
"""Deprecated. | |
A simple pipeline to load image. | |
""" | |
def __call__(self, results): | |
"""Call function to load images into results. | |
Args: | |
results (dict): A result dict contains the file name | |
of the image to be read. | |
Returns: | |
dict: ``results`` will be returned containing loaded image. | |
""" | |
warnings.simplefilter('once') | |
warnings.warn('`LoadImage` is deprecated and will be removed in ' | |
'future releases. You may use `LoadImageFromWebcam` ' | |
'from `mmdet.datasets.pipelines.` instead.') | |
if isinstance(results['img'], str): | |
results['filename'] = results['img'] | |
results['ori_filename'] = results['img'] | |
else: | |
results['filename'] = None | |
results['ori_filename'] = None | |
img = mmcv.imread(results['img']) | |
results['img'] = img | |
results['img_fields'] = ['img'] | |
results['img_shape'] = img.shape | |
results['ori_shape'] = img.shape | |
return results | |
def inference_detector(model, imgs): | |
"""Inference image(s) with the detector. | |
Args: | |
model (nn.Module): The loaded detector. | |
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): | |
Either image files or loaded images. | |
Returns: | |
If imgs is a list or tuple, the same length list type results | |
will be returned, otherwise return the detection results directly. | |
""" | |
if isinstance(imgs, (list, tuple)): | |
is_batch = True | |
else: | |
imgs = [imgs] | |
is_batch = False | |
cfg = model.cfg | |
device = next(model.parameters()).device # model device | |
if isinstance(imgs[0], np.ndarray): | |
cfg = cfg.copy() | |
# set loading pipeline type | |
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' | |
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) | |
test_pipeline = Compose(cfg.data.test.pipeline) | |
datas = [] | |
for img in imgs: | |
# prepare data | |
if isinstance(img, np.ndarray): | |
# directly add img | |
data = dict(img=img) | |
else: | |
# add information into dict | |
data = dict(img_info=dict(filename=img), img_prefix=None) | |
# build the data pipeline | |
data = test_pipeline(data) | |
datas.append(data) | |
data = collate(datas, samples_per_gpu=len(imgs)) | |
# just get the actual data from DataContainer | |
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] | |
data['img'] = [img.data[0] for img in data['img']] | |
if next(model.parameters()).is_cuda: | |
# scatter to specified GPU | |
data = scatter(data, [device])[0] | |
else: | |
for m in model.modules(): | |
assert not isinstance( | |
m, RoIPool | |
), 'CPU inference with RoIPool is not supported currently.' | |
# forward the model | |
with torch.no_grad(): | |
results = model(return_loss=False, rescale=True, **data) | |
if not is_batch: | |
return results[0] | |
else: | |
return results | |
async def async_inference_detector(model, imgs): | |
"""Async inference image(s) with the detector. | |
Args: | |
model (nn.Module): The loaded detector. | |
img (str | ndarray): Either image files or loaded images. | |
Returns: | |
Awaitable detection results. | |
""" | |
if not isinstance(imgs, (list, tuple)): | |
imgs = [imgs] | |
cfg = model.cfg | |
device = next(model.parameters()).device # model device | |
if isinstance(imgs[0], np.ndarray): | |
cfg = cfg.copy() | |
# set loading pipeline type | |
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' | |
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) | |
test_pipeline = Compose(cfg.data.test.pipeline) | |
datas = [] | |
for img in imgs: | |
# prepare data | |
if isinstance(img, np.ndarray): | |
# directly add img | |
data = dict(img=img) | |
else: | |
# add information into dict | |
data = dict(img_info=dict(filename=img), img_prefix=None) | |
# build the data pipeline | |
data = test_pipeline(data) | |
datas.append(data) | |
data = collate(datas, samples_per_gpu=len(imgs)) | |
# just get the actual data from DataContainer | |
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] | |
data['img'] = [img.data[0] for img in data['img']] | |
if next(model.parameters()).is_cuda: | |
# scatter to specified GPU | |
data = scatter(data, [device])[0] | |
else: | |
for m in model.modules(): | |
assert not isinstance( | |
m, RoIPool | |
), 'CPU inference with RoIPool is not supported currently.' | |
# We don't restore `torch.is_grad_enabled()` value during concurrent | |
# inference since execution can overlap | |
torch.set_grad_enabled(False) | |
results = await model.aforward_test(rescale=True, **data) | |
return results | |
def show_result_pyplot(model, | |
img, | |
result, | |
score_thr=0.3, | |
title='result', | |
wait_time=0, | |
palette=None, | |
out_file=None): | |
"""Visualize the detection results on the image. | |
Args: | |
model (nn.Module): The loaded detector. | |
img (str or np.ndarray): Image filename or loaded image. | |
result (tuple[list] or list): The detection result, can be either | |
(bbox, segm) or just bbox. | |
score_thr (float): The threshold to visualize the bboxes and masks. | |
title (str): Title of the pyplot figure. | |
wait_time (float): Value of waitKey param. Default: 0. | |
palette (str or tuple(int) or :obj:`Color`): Color. | |
The tuple of color should be in BGR order. | |
out_file (str or None): The path to write the image. | |
Default: None. | |
""" | |
if hasattr(model, 'module'): | |
model = model.module | |
model.show_result( | |
img, | |
result, | |
score_thr=score_thr, | |
show=True, | |
wait_time=wait_time, | |
win_name=title, | |
bbox_color=palette, | |
text_color=(200, 200, 200), | |
mask_color=palette, | |
out_file=out_file) | |