RockeyCoss
reconstruct implementation
0702ffc
raw
history blame
8.63 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from pathlib import Path
import mmcv
import numpy as np
import torch
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmdet.core import get_classes
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
"""Initialize a detector from config file.
Args:
config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
cfg_options (dict): Options to override some settings in the used
config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, (str, Path)):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
if 'pretrained' in config.model:
config.model.pretrained = None
elif 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
config.model.train_cfg = None
model = build_detector(config.model, test_cfg=config.get('test_cfg'))
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
if device == 'npu':
from mmcv.device.npu import NPUDataParallel
model = NPUDataParallel(model)
model.cfg = config
return model
class LoadImage:
"""Deprecated.
A simple pipeline to load image.
"""
def __call__(self, results):
"""Call function to load images into results.
Args:
results (dict): A result dict contains the file name
of the image to be read.
Returns:
dict: ``results`` will be returned containing loaded image.
"""
warnings.simplefilter('once')
warnings.warn('`LoadImage` is deprecated and will be removed in '
'future releases. You may use `LoadImageFromWebcam` '
'from `mmdet.datasets.pipelines.` instead.')
if isinstance(results['img'], str):
results['filename'] = results['img']
results['ori_filename'] = results['img']
else:
results['filename'] = None
results['ori_filename'] = None
img = mmcv.imread(results['img'])
results['img'] = img
results['img_fields'] = ['img']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
return results
def inference_detector(model, imgs):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
Returns:
If imgs is a list or tuple, the same length list type results
will be returned, otherwise return the detection results directly.
"""
if isinstance(imgs, (list, tuple)):
is_batch = True
else:
imgs = [imgs]
is_batch = False
cfg = model.cfg
device = next(model.parameters()).device # model device
if isinstance(imgs[0], np.ndarray):
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
for img in imgs:
# prepare data
if isinstance(img, np.ndarray):
# directly add img
data = dict(img=img)
else:
# add information into dict
data = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
data = test_pipeline(data)
datas.append(data)
data = collate(datas, samples_per_gpu=len(imgs))
# just get the actual data from DataContainer
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
data['img'] = [img.data[0] for img in data['img']]
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
# forward the model
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data)
if not is_batch:
return results[0]
else:
return results
async def async_inference_detector(model, imgs):
"""Async inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
img (str | ndarray): Either image files or loaded images.
Returns:
Awaitable detection results.
"""
if not isinstance(imgs, (list, tuple)):
imgs = [imgs]
cfg = model.cfg
device = next(model.parameters()).device # model device
if isinstance(imgs[0], np.ndarray):
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
for img in imgs:
# prepare data
if isinstance(img, np.ndarray):
# directly add img
data = dict(img=img)
else:
# add information into dict
data = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
data = test_pipeline(data)
datas.append(data)
data = collate(datas, samples_per_gpu=len(imgs))
# just get the actual data from DataContainer
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
data['img'] = [img.data[0] for img in data['img']]
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
# We don't restore `torch.is_grad_enabled()` value during concurrent
# inference since execution can overlap
torch.set_grad_enabled(False)
results = await model.aforward_test(rescale=True, **data)
return results
def show_result_pyplot(model,
img,
result,
score_thr=0.3,
title='result',
wait_time=0,
palette=None,
out_file=None):
"""Visualize the detection results on the image.
Args:
model (nn.Module): The loaded detector.
img (str or np.ndarray): Image filename or loaded image.
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
score_thr (float): The threshold to visualize the bboxes and masks.
title (str): Title of the pyplot figure.
wait_time (float): Value of waitKey param. Default: 0.
palette (str or tuple(int) or :obj:`Color`): Color.
The tuple of color should be in BGR order.
out_file (str or None): The path to write the image.
Default: None.
"""
if hasattr(model, 'module'):
model = model.module
model.show_result(
img,
result,
score_thr=score_thr,
show=True,
wait_time=wait_time,
win_name=title,
bbox_color=palette,
text_color=(200, 200, 200),
mask_color=palette,
out_file=out_file)