Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import numpy as np | |
import torch | |
from mmcv.runner import get_dist_info | |
from torch.utils.data import Sampler | |
class GroupSampler(Sampler): | |
def __init__(self, dataset, samples_per_gpu=1): | |
assert hasattr(dataset, 'flag') | |
self.dataset = dataset | |
self.samples_per_gpu = samples_per_gpu | |
self.flag = dataset.flag.astype(np.int64) | |
self.group_sizes = np.bincount(self.flag) | |
self.num_samples = 0 | |
for i, size in enumerate(self.group_sizes): | |
self.num_samples += int(np.ceil( | |
size / self.samples_per_gpu)) * self.samples_per_gpu | |
def __iter__(self): | |
indices = [] | |
for i, size in enumerate(self.group_sizes): | |
if size == 0: | |
continue | |
indice = np.where(self.flag == i)[0] | |
assert len(indice) == size | |
np.random.shuffle(indice) | |
num_extra = int(np.ceil(size / self.samples_per_gpu) | |
) * self.samples_per_gpu - len(indice) | |
indice = np.concatenate( | |
[indice, np.random.choice(indice, num_extra)]) | |
indices.append(indice) | |
indices = np.concatenate(indices) | |
indices = [ | |
indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] | |
for i in np.random.permutation( | |
range(len(indices) // self.samples_per_gpu)) | |
] | |
indices = np.concatenate(indices) | |
indices = indices.astype(np.int64).tolist() | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def __len__(self): | |
return self.num_samples | |
class DistributedGroupSampler(Sampler): | |
"""Sampler that restricts data loading to a subset of the dataset. | |
It is especially useful in conjunction with | |
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each | |
process can pass a DistributedSampler instance as a DataLoader sampler, | |
and load a subset of the original dataset that is exclusive to it. | |
.. note:: | |
Dataset is assumed to be of constant size. | |
Arguments: | |
dataset: Dataset used for sampling. | |
num_replicas (optional): Number of processes participating in | |
distributed training. | |
rank (optional): Rank of the current process within num_replicas. | |
seed (int, optional): random seed used to shuffle the sampler if | |
``shuffle=True``. This number should be identical across all | |
processes in the distributed group. Default: 0. | |
""" | |
def __init__(self, | |
dataset, | |
samples_per_gpu=1, | |
num_replicas=None, | |
rank=None, | |
seed=0): | |
_rank, _num_replicas = get_dist_info() | |
if num_replicas is None: | |
num_replicas = _num_replicas | |
if rank is None: | |
rank = _rank | |
self.dataset = dataset | |
self.samples_per_gpu = samples_per_gpu | |
self.num_replicas = num_replicas | |
self.rank = rank | |
self.epoch = 0 | |
self.seed = seed if seed is not None else 0 | |
assert hasattr(self.dataset, 'flag') | |
self.flag = self.dataset.flag | |
self.group_sizes = np.bincount(self.flag) | |
self.num_samples = 0 | |
for i, j in enumerate(self.group_sizes): | |
self.num_samples += int( | |
math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu / | |
self.num_replicas)) * self.samples_per_gpu | |
self.total_size = self.num_samples * self.num_replicas | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch + self.seed) | |
indices = [] | |
for i, size in enumerate(self.group_sizes): | |
if size > 0: | |
indice = np.where(self.flag == i)[0] | |
assert len(indice) == size | |
# add .numpy() to avoid bug when selecting indice in parrots. | |
# TODO: check whether torch.randperm() can be replaced by | |
# numpy.random.permutation(). | |
indice = indice[list( | |
torch.randperm(int(size), generator=g).numpy())].tolist() | |
extra = int( | |
math.ceil( | |
size * 1.0 / self.samples_per_gpu / self.num_replicas) | |
) * self.samples_per_gpu * self.num_replicas - len(indice) | |
# pad indice | |
tmp = indice.copy() | |
for _ in range(extra // size): | |
indice.extend(tmp) | |
indice.extend(tmp[:extra % size]) | |
indices.extend(indice) | |
assert len(indices) == self.total_size | |
indices = [ | |
indices[j] for i in list( | |
torch.randperm( | |
len(indices) // self.samples_per_gpu, generator=g)) | |
for j in range(i * self.samples_per_gpu, (i + 1) * | |
self.samples_per_gpu) | |
] | |
# subsample | |
offset = self.num_samples * self.rank | |
indices = indices[offset:offset + self.num_samples] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def __len__(self): | |
return self.num_samples | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |