File size: 19,280 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from mmdet.core import bbox2result, bbox2roi, bbox_xyxy_to_cxcywh
from mmdet.core.bbox.samplers import PseudoSampler
from ..builder import HEADS
from .cascade_roi_head import CascadeRoIHead


@HEADS.register_module()
class SparseRoIHead(CascadeRoIHead):
    r"""The RoIHead for `Sparse R-CNN: End-to-End Object Detection with
    Learnable Proposals <https://arxiv.org/abs/2011.12450>`_
    and `Instances as Queries <http://arxiv.org/abs/2105.01928>`_

    Args:
        num_stages (int): Number of stage whole iterative process.
            Defaults to 6.
        stage_loss_weights (Tuple[float]): The loss
            weight of each stage. By default all stages have
            the same weight 1.
        bbox_roi_extractor (dict): Config of box roi extractor.
        mask_roi_extractor (dict): Config of mask roi extractor.
        bbox_head (dict): Config of box head.
        mask_head (dict): Config of mask head.
        train_cfg (dict, optional): Configuration information in train stage.
            Defaults to None.
        test_cfg (dict, optional): Configuration information in test stage.
            Defaults to None.
        pretrained (str, optional): model pretrained path. Default: None
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None

    """

    def __init__(self,
                 num_stages=6,
                 stage_loss_weights=(1, 1, 1, 1, 1, 1),
                 proposal_feature_channel=256,
                 bbox_roi_extractor=dict(
                     type='SingleRoIExtractor',
                     roi_layer=dict(
                         type='RoIAlign', output_size=7, sampling_ratio=2),
                     out_channels=256,
                     featmap_strides=[4, 8, 16, 32]),
                 mask_roi_extractor=None,
                 bbox_head=dict(
                     type='DIIHead',
                     num_classes=80,
                     num_fcs=2,
                     num_heads=8,
                     num_cls_fcs=1,
                     num_reg_fcs=3,
                     feedforward_channels=2048,
                     hidden_channels=256,
                     dropout=0.0,
                     roi_feat_size=7,
                     ffn_act_cfg=dict(type='ReLU', inplace=True)),
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 init_cfg=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        assert len(stage_loss_weights) == num_stages
        self.num_stages = num_stages
        self.stage_loss_weights = stage_loss_weights
        self.proposal_feature_channel = proposal_feature_channel
        super(SparseRoIHead, self).__init__(
            num_stages,
            stage_loss_weights,
            bbox_roi_extractor=bbox_roi_extractor,
            mask_roi_extractor=mask_roi_extractor,
            bbox_head=bbox_head,
            mask_head=mask_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
            init_cfg=init_cfg)
        # train_cfg would be None when run the test.py
        if train_cfg is not None:
            for stage in range(num_stages):
                assert isinstance(self.bbox_sampler[stage], PseudoSampler), \
                    'Sparse R-CNN and QueryInst only support `PseudoSampler`'

    def _bbox_forward(self, stage, x, rois, object_feats, img_metas):
        """Box head forward function used in both training and testing. Returns
        all regression, classification results and a intermediate feature.

        Args:
            stage (int): The index of current stage in
                iterative process.
            x (List[Tensor]): List of FPN features
            rois (Tensor): Rois in total batch. With shape (num_proposal, 5).
                the last dimension 5 represents (img_index, x1, y1, x2, y2).
            object_feats (Tensor): The object feature extracted from
                the previous stage.
            img_metas (dict): meta information of images.

        Returns:
            dict[str, Tensor]: a dictionary of bbox head outputs,
                Containing the following results:

                    - cls_score (Tensor): The score of each class, has
                      shape (batch_size, num_proposals, num_classes)
                      when use focal loss or
                      (batch_size, num_proposals, num_classes+1)
                      otherwise.
                    - decode_bbox_pred (Tensor): The regression results
                      with shape (batch_size, num_proposal, 4).
                      The last dimension 4 represents
                      [tl_x, tl_y, br_x, br_y].
                    - object_feats (Tensor): The object feature extracted
                      from current stage
                    - detach_cls_score_list (list[Tensor]): The detached
                      classification results, length is batch_size, and
                      each tensor has shape (num_proposal, num_classes).
                    - detach_proposal_list (list[tensor]): The detached
                      regression results, length is batch_size, and each
                      tensor has shape (num_proposal, 4). The last
                      dimension 4 represents [tl_x, tl_y, br_x, br_y].
        """
        num_imgs = len(img_metas)
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                        rois)
        cls_score, bbox_pred, object_feats, attn_feats = bbox_head(
            bbox_feats, object_feats)
        proposal_list = self.bbox_head[stage].refine_bboxes(
            rois,
            rois.new_zeros(len(rois)),  # dummy arg
            bbox_pred.view(-1, bbox_pred.size(-1)),
            [rois.new_zeros(object_feats.size(1)) for _ in range(num_imgs)],
            img_metas)
        bbox_results = dict(
            cls_score=cls_score,
            decode_bbox_pred=torch.cat(proposal_list),
            object_feats=object_feats,
            attn_feats=attn_feats,
            # detach then use it in label assign
            detach_cls_score_list=[
                cls_score[i].detach() for i in range(num_imgs)
            ],
            detach_proposal_list=[item.detach() for item in proposal_list])

        return bbox_results

    def _mask_forward(self, stage, x, rois, attn_feats):
        """Mask head forward function used in both training and testing."""
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
                                        rois)
        # do not support caffe_c4 model anymore
        mask_pred = mask_head(mask_feats, attn_feats)

        mask_results = dict(mask_pred=mask_pred)
        return mask_results

    def _mask_forward_train(self, stage, x, attn_feats, sampling_results,
                            gt_masks, rcnn_train_cfg):
        """Run forward function and calculate loss for mask head in
        training."""
        pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
        attn_feats = torch.cat([
            feats[res.pos_inds]
            for (feats, res) in zip(attn_feats, sampling_results)
        ])
        mask_results = self._mask_forward(stage, x, pos_rois, attn_feats)

        mask_targets = self.mask_head[stage].get_targets(
            sampling_results, gt_masks, rcnn_train_cfg)

        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])

        loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'],
                                               mask_targets, pos_labels)
        mask_results.update(loss_mask)
        return mask_results

    def forward_train(self,
                      x,
                      proposal_boxes,
                      proposal_features,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      imgs_whwh=None,
                      gt_masks=None):
        """Forward function in training stage.

        Args:
            x (list[Tensor]): list of multi-level img features.
            proposals (Tensor): Decoded proposal bboxes, has shape
                (batch_size, num_proposals, 4)
            proposal_features (Tensor): Expanded proposal
                features, has shape
                (batch_size, num_proposals, proposal_feature_channel)
            img_metas (list[dict]): list of image info dict where
                each dict has: 'img_shape', 'scale_factor', 'flip',
                and may also contain 'filename', 'ori_shape',
                'pad_shape', and 'img_norm_cfg'. For details on the
                values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
            imgs_whwh (Tensor): Tensor with shape (batch_size, 4),
                    the dimension means
                    [img_width,img_height, img_width, img_height].
            gt_masks (None | Tensor) : true segmentation masks for each box
                used if the architecture supports a segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components of all stage.
        """

        num_imgs = len(img_metas)
        num_proposals = proposal_boxes.size(1)
        imgs_whwh = imgs_whwh.repeat(1, num_proposals, 1)
        all_stage_bbox_results = []
        proposal_list = [proposal_boxes[i] for i in range(len(proposal_boxes))]
        object_feats = proposal_features
        all_stage_loss = {}
        for stage in range(self.num_stages):
            rois = bbox2roi(proposal_list)
            bbox_results = self._bbox_forward(stage, x, rois, object_feats,
                                              img_metas)
            all_stage_bbox_results.append(bbox_results)
            if gt_bboxes_ignore is None:
                # TODO support ignore
                gt_bboxes_ignore = [None for _ in range(num_imgs)]
            sampling_results = []
            cls_pred_list = bbox_results['detach_cls_score_list']
            proposal_list = bbox_results['detach_proposal_list']
            for i in range(num_imgs):
                normalize_bbox_ccwh = bbox_xyxy_to_cxcywh(proposal_list[i] /
                                                          imgs_whwh[i])
                assign_result = self.bbox_assigner[stage].assign(
                    normalize_bbox_ccwh, cls_pred_list[i], gt_bboxes[i],
                    gt_labels[i], img_metas[i])
                sampling_result = self.bbox_sampler[stage].sample(
                    assign_result, proposal_list[i], gt_bboxes[i])
                sampling_results.append(sampling_result)
            bbox_targets = self.bbox_head[stage].get_targets(
                sampling_results, gt_bboxes, gt_labels, self.train_cfg[stage],
                True)
            cls_score = bbox_results['cls_score']
            decode_bbox_pred = bbox_results['decode_bbox_pred']

            single_stage_loss = self.bbox_head[stage].loss(
                cls_score.view(-1, cls_score.size(-1)),
                decode_bbox_pred.view(-1, 4),
                *bbox_targets,
                imgs_whwh=imgs_whwh)

            if self.with_mask:
                mask_results = self._mask_forward_train(
                    stage, x, bbox_results['attn_feats'], sampling_results,
                    gt_masks, self.train_cfg[stage])
                single_stage_loss['loss_mask'] = mask_results['loss_mask']

            for key, value in single_stage_loss.items():
                all_stage_loss[f'stage{stage}_{key}'] = value * \
                                    self.stage_loss_weights[stage]
            object_feats = bbox_results['object_feats']

        return all_stage_loss

    def simple_test(self,
                    x,
                    proposal_boxes,
                    proposal_features,
                    img_metas,
                    imgs_whwh,
                    rescale=False):
        """Test without augmentation.

        Args:
            x (list[Tensor]): list of multi-level img features.
            proposal_boxes (Tensor): Decoded proposal bboxes, has shape
                (batch_size, num_proposals, 4)
            proposal_features (Tensor): Expanded proposal
                features, has shape
                (batch_size, num_proposals, proposal_feature_channel)
            img_metas (dict): meta information of images.
            imgs_whwh (Tensor): Tensor with shape (batch_size, 4),
                    the dimension means
                    [img_width,img_height, img_width, img_height].
            rescale (bool): If True, return boxes in original image
                space. Defaults to False.

        Returns:
            list[list[np.ndarray]] or list[tuple]: When no mask branch,
            it is bbox results of each image and classes with type
            `list[list[np.ndarray]]`. The outer list
            corresponds to each image. The inner list
            corresponds to each class. When the model has a mask branch,
            it is a list[tuple] that contains bbox results and mask results.
            The outer list corresponds to each image, and first element
            of tuple is bbox results, second element is mask results.
        """
        assert self.with_bbox, 'Bbox head must be implemented.'
        # Decode initial proposals
        num_imgs = len(img_metas)
        proposal_list = [proposal_boxes[i] for i in range(num_imgs)]
        ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
        scale_factors = tuple(meta['scale_factor'] for meta in img_metas)

        object_feats = proposal_features
        if all([proposal.shape[0] == 0 for proposal in proposal_list]):
            # There is no proposal in the whole batch
            bbox_results = [[
                np.zeros((0, 5), dtype=np.float32)
                for i in range(self.bbox_head[-1].num_classes)
            ]] * num_imgs
            return bbox_results

        for stage in range(self.num_stages):
            rois = bbox2roi(proposal_list)
            bbox_results = self._bbox_forward(stage, x, rois, object_feats,
                                              img_metas)
            object_feats = bbox_results['object_feats']
            cls_score = bbox_results['cls_score']
            proposal_list = bbox_results['detach_proposal_list']

        if self.with_mask:
            rois = bbox2roi(proposal_list)
            mask_results = self._mask_forward(stage, x, rois,
                                              bbox_results['attn_feats'])
            mask_results['mask_pred'] = mask_results['mask_pred'].reshape(
                num_imgs, -1, *mask_results['mask_pred'].size()[1:])

        num_classes = self.bbox_head[-1].num_classes
        det_bboxes = []
        det_labels = []

        if self.bbox_head[-1].loss_cls.use_sigmoid:
            cls_score = cls_score.sigmoid()
        else:
            cls_score = cls_score.softmax(-1)[..., :-1]

        for img_id in range(num_imgs):
            cls_score_per_img = cls_score[img_id]
            scores_per_img, topk_indices = cls_score_per_img.flatten(
                0, 1).topk(
                    self.test_cfg.max_per_img, sorted=False)
            labels_per_img = topk_indices % num_classes
            bbox_pred_per_img = proposal_list[img_id][topk_indices //
                                                      num_classes]
            if rescale:
                scale_factor = img_metas[img_id]['scale_factor']
                bbox_pred_per_img /= bbox_pred_per_img.new_tensor(scale_factor)
            det_bboxes.append(
                torch.cat([bbox_pred_per_img, scores_per_img[:, None]], dim=1))
            det_labels.append(labels_per_img)

        bbox_results = [
            bbox2result(det_bboxes[i], det_labels[i], num_classes)
            for i in range(num_imgs)
        ]

        if self.with_mask:
            if rescale and not isinstance(scale_factors[0], float):
                scale_factors = [
                    torch.from_numpy(scale_factor).to(det_bboxes[0].device)
                    for scale_factor in scale_factors
                ]
            _bboxes = [
                det_bboxes[i][:, :4] *
                scale_factors[i] if rescale else det_bboxes[i][:, :4]
                for i in range(len(det_bboxes))
            ]
            segm_results = []
            mask_pred = mask_results['mask_pred']
            for img_id in range(num_imgs):
                mask_pred_per_img = mask_pred[img_id].flatten(0,
                                                              1)[topk_indices]
                mask_pred_per_img = mask_pred_per_img[:, None, ...].repeat(
                    1, num_classes, 1, 1)
                segm_result = self.mask_head[-1].get_seg_masks(
                    mask_pred_per_img, _bboxes[img_id], det_labels[img_id],
                    self.test_cfg, ori_shapes[img_id], scale_factors[img_id],
                    rescale)
                segm_results.append(segm_result)

        if self.with_mask:
            results = list(zip(bbox_results, segm_results))
        else:
            results = bbox_results

        return results

    def aug_test(self, features, proposal_list, img_metas, rescale=False):
        raise NotImplementedError(
            'Sparse R-CNN and QueryInst does not support `aug_test`')

    def forward_dummy(self, x, proposal_boxes, proposal_features, img_metas):
        """Dummy forward function when do the flops computing."""
        all_stage_bbox_results = []
        proposal_list = [proposal_boxes[i] for i in range(len(proposal_boxes))]
        object_feats = proposal_features
        if self.with_bbox:
            for stage in range(self.num_stages):
                rois = bbox2roi(proposal_list)
                bbox_results = self._bbox_forward(stage, x, rois, object_feats,
                                                  img_metas)

                all_stage_bbox_results.append((bbox_results, ))
                proposal_list = bbox_results['detach_proposal_list']
                object_feats = bbox_results['object_feats']

                if self.with_mask:
                    rois = bbox2roi(proposal_list)
                    mask_results = self._mask_forward(
                        stage, x, rois, bbox_results['attn_feats'])
                    all_stage_bbox_results[-1] += (mask_results, )
        return all_stage_bbox_results