File size: 18,743 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend  # noqa
import os
import warnings

import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point

from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks
from .. import builder
from ..builder import HEADS
from .standard_roi_head import StandardRoIHead


@HEADS.register_module()
class PointRendRoIHead(StandardRoIHead):
    """`PointRend <https://arxiv.org/abs/1912.08193>`_."""

    def __init__(self, point_head, *args, **kwargs):
        super().__init__(*args, **kwargs)
        assert self.with_bbox and self.with_mask
        self.init_point_head(point_head)

    def init_point_head(self, point_head):
        """Initialize ``point_head``"""
        self.point_head = builder.build_head(point_head)

    def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
                            img_metas):
        """Run forward function and calculate loss for mask head and point head
        in training."""
        mask_results = super()._mask_forward_train(x, sampling_results,
                                                   bbox_feats, gt_masks,
                                                   img_metas)
        if mask_results['loss_mask'] is not None:
            loss_point = self._mask_point_forward_train(
                x, sampling_results, mask_results['mask_pred'], gt_masks,
                img_metas)
            mask_results['loss_mask'].update(loss_point)

        return mask_results

    def _mask_point_forward_train(self, x, sampling_results, mask_pred,
                                  gt_masks, img_metas):
        """Run forward function and calculate loss for point head in
        training."""
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        rel_roi_points = self.point_head.get_roi_rel_points_train(
            mask_pred, pos_labels, cfg=self.train_cfg)
        rois = bbox2roi([res.pos_bboxes for res in sampling_results])

        fine_grained_point_feats = self._get_fine_grained_point_feats(
            x, rois, rel_roi_points, img_metas)
        coarse_point_feats = point_sample(mask_pred, rel_roi_points)
        mask_point_pred = self.point_head(fine_grained_point_feats,
                                          coarse_point_feats)
        mask_point_target = self.point_head.get_targets(
            rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg)
        loss_mask_point = self.point_head.loss(mask_point_pred,
                                               mask_point_target, pos_labels)

        return loss_mask_point

    def _get_fine_grained_point_feats(self, x, rois, rel_roi_points,
                                      img_metas):
        """Sample fine grained feats from each level feature map and
        concatenate them together.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the [mask_height, mask_width] grid.
            img_metas (list[dict]): Image meta info.

        Returns:
            Tensor: The fine grained features for each points,
                has shape (num_rois, feats_channels, num_points).
        """
        num_imgs = len(img_metas)
        fine_grained_feats = []
        for idx in range(self.mask_roi_extractor.num_inputs):
            feats = x[idx]
            spatial_scale = 1. / float(
                self.mask_roi_extractor.featmap_strides[idx])
            point_feats = []
            for batch_ind in range(num_imgs):
                # unravel batch dim
                feat = feats[batch_ind].unsqueeze(0)
                inds = (rois[:, 0].long() == batch_ind)
                if inds.any():
                    rel_img_points = rel_roi_point_to_rel_img_point(
                        rois[inds], rel_roi_points[inds], feat.shape[2:],
                        spatial_scale).unsqueeze(0)
                    point_feat = point_sample(feat, rel_img_points)
                    point_feat = point_feat.squeeze(0).transpose(0, 1)
                    point_feats.append(point_feat)
            fine_grained_feats.append(torch.cat(point_feats, dim=0))
        return torch.cat(fine_grained_feats, dim=1)

    def _mask_point_forward_test(self, x, rois, label_pred, mask_pred,
                                 img_metas):
        """Mask refining process with point head in testing.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            label_pred (Tensor): The predication class for each rois.
            mask_pred (Tensor): The predication coarse masks of
                shape (num_rois, num_classes, small_size, small_size).
            img_metas (list[dict]): Image meta info.

        Returns:
            Tensor: The refined masks of shape (num_rois, num_classes,
                large_size, large_size).
        """
        refined_mask_pred = mask_pred.clone()
        for subdivision_step in range(self.test_cfg.subdivision_steps):
            refined_mask_pred = F.interpolate(
                refined_mask_pred,
                scale_factor=self.test_cfg.scale_factor,
                mode='bilinear',
                align_corners=False)
            # If `subdivision_num_points` is larger or equal to the
            # resolution of the next step, then we can skip this step
            num_rois, channels, mask_height, mask_width = \
                refined_mask_pred.shape
            if (self.test_cfg.subdivision_num_points >=
                    self.test_cfg.scale_factor**2 * mask_height * mask_width
                    and
                    subdivision_step < self.test_cfg.subdivision_steps - 1):
                continue
            point_indices, rel_roi_points = \
                self.point_head.get_roi_rel_points_test(
                    refined_mask_pred, label_pred, cfg=self.test_cfg)
            fine_grained_point_feats = self._get_fine_grained_point_feats(
                x, rois, rel_roi_points, img_metas)
            coarse_point_feats = point_sample(mask_pred, rel_roi_points)
            mask_point_pred = self.point_head(fine_grained_point_feats,
                                              coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_mask_pred = refined_mask_pred.reshape(
                num_rois, channels, mask_height * mask_width)
            refined_mask_pred = refined_mask_pred.scatter_(
                2, point_indices, mask_point_pred)
            refined_mask_pred = refined_mask_pred.view(num_rois, channels,
                                                       mask_height, mask_width)

        return refined_mask_pred

    def simple_test_mask(self,
                         x,
                         img_metas,
                         det_bboxes,
                         det_labels,
                         rescale=False):
        """Obtain mask prediction without augmentation."""
        ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
        scale_factors = tuple(meta['scale_factor'] for meta in img_metas)

        if isinstance(scale_factors[0], float):
            warnings.warn(
                'Scale factor in img_metas should be a '
                'ndarray with shape (4,) '
                'arrange as (factor_w, factor_h, factor_w, factor_h), '
                'The scale_factor with float type has been deprecated. ')
            scale_factors = np.array([scale_factors] * 4, dtype=np.float32)

        num_imgs = len(det_bboxes)
        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            segm_results = [[[] for _ in range(self.mask_head.num_classes)]
                            for _ in range(num_imgs)]
        else:
            # if det_bboxes is rescaled to the original image size, we need to
            # rescale it back to the testing scale to obtain RoIs.
            _bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))]
            if rescale:
                scale_factors = [
                    torch.from_numpy(scale_factor).to(det_bboxes[0].device)
                    for scale_factor in scale_factors
                ]
                _bboxes = [
                    _bboxes[i] * scale_factors[i] for i in range(len(_bboxes))
                ]

            mask_rois = bbox2roi(_bboxes)
            mask_results = self._mask_forward(x, mask_rois)
            # split batch mask prediction back to each image
            mask_pred = mask_results['mask_pred']
            num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes]
            mask_preds = mask_pred.split(num_mask_roi_per_img, 0)
            mask_rois = mask_rois.split(num_mask_roi_per_img, 0)

            # apply mask post-processing to each image individually
            segm_results = []
            for i in range(num_imgs):
                if det_bboxes[i].shape[0] == 0:
                    segm_results.append(
                        [[] for _ in range(self.mask_head.num_classes)])
                else:
                    x_i = [xx[[i]] for xx in x]
                    mask_rois_i = mask_rois[i]
                    mask_rois_i[:, 0] = 0  # TODO: remove this hack
                    mask_pred_i = self._mask_point_forward_test(
                        x_i, mask_rois_i, det_labels[i], mask_preds[i],
                        [img_metas])
                    segm_result = self.mask_head.get_seg_masks(
                        mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg,
                        ori_shapes[i], scale_factors[i], rescale)
                    segm_results.append(segm_result)
        return segm_results

    def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
        """Test for mask head with test time augmentation."""
        if det_bboxes.shape[0] == 0:
            segm_result = [[] for _ in range(self.mask_head.num_classes)]
        else:
            aug_masks = []
            for x, img_meta in zip(feats, img_metas):
                img_shape = img_meta[0]['img_shape']
                scale_factor = img_meta[0]['scale_factor']
                flip = img_meta[0]['flip']
                _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
                                       scale_factor, flip)
                mask_rois = bbox2roi([_bboxes])
                mask_results = self._mask_forward(x, mask_rois)
                mask_results['mask_pred'] = self._mask_point_forward_test(
                    x, mask_rois, det_labels, mask_results['mask_pred'],
                    img_meta)
                # convert to numpy array to save memory
                aug_masks.append(
                    mask_results['mask_pred'].sigmoid().cpu().numpy())
            merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg)

            ori_shape = img_metas[0][0]['ori_shape']
            segm_result = self.mask_head.get_seg_masks(
                merged_masks,
                det_bboxes,
                det_labels,
                self.test_cfg,
                ori_shape,
                scale_factor=1.0,
                rescale=False)
        return segm_result

    def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points):
        """Export the process of sampling fine grained feats to onnx.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the [mask_height, mask_width] grid.

        Returns:
            Tensor: The fine grained features for each points,
                has shape (num_rois, feats_channels, num_points).
        """
        batch_size = x[0].shape[0]
        num_rois = rois.shape[0]
        fine_grained_feats = []
        for idx in range(self.mask_roi_extractor.num_inputs):
            feats = x[idx]
            spatial_scale = 1. / float(
                self.mask_roi_extractor.featmap_strides[idx])

            rel_img_points = rel_roi_point_to_rel_img_point(
                rois, rel_roi_points, feats, spatial_scale)
            channels = feats.shape[1]
            num_points = rel_img_points.shape[1]
            rel_img_points = rel_img_points.reshape(batch_size, -1, num_points,
                                                    2)
            point_feats = point_sample(feats, rel_img_points)
            point_feats = point_feats.transpose(1, 2).reshape(
                num_rois, channels, num_points)
            fine_grained_feats.append(point_feats)
        return torch.cat(fine_grained_feats, dim=1)

    def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred):
        """Export mask refining process with point head to onnx.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            label_pred (Tensor): The predication class for each rois.
            mask_pred (Tensor): The predication coarse masks of
                shape (num_rois, num_classes, small_size, small_size).

        Returns:
            Tensor: The refined masks of shape (num_rois, num_classes,
                large_size, large_size).
        """
        refined_mask_pred = mask_pred.clone()
        for subdivision_step in range(self.test_cfg.subdivision_steps):
            refined_mask_pred = F.interpolate(
                refined_mask_pred,
                scale_factor=self.test_cfg.scale_factor,
                mode='bilinear',
                align_corners=False)
            # If `subdivision_num_points` is larger or equal to the
            # resolution of the next step, then we can skip this step
            num_rois, channels, mask_height, mask_width = \
                refined_mask_pred.shape
            if (self.test_cfg.subdivision_num_points >=
                    self.test_cfg.scale_factor**2 * mask_height * mask_width
                    and
                    subdivision_step < self.test_cfg.subdivision_steps - 1):
                continue
            point_indices, rel_roi_points = \
                self.point_head.get_roi_rel_points_test(
                    refined_mask_pred, label_pred, cfg=self.test_cfg)
            fine_grained_point_feats = self._onnx_get_fine_grained_point_feats(
                x, rois, rel_roi_points)
            coarse_point_feats = point_sample(mask_pred, rel_roi_points)
            mask_point_pred = self.point_head(fine_grained_point_feats,
                                              coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_mask_pred = refined_mask_pred.reshape(
                num_rois, channels, mask_height * mask_width)

            is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
            # avoid ScatterElements op in ONNX for TensorRT
            if is_trt_backend:
                mask_shape = refined_mask_pred.shape
                point_shape = point_indices.shape
                inds_dim0 = torch.arange(point_shape[0]).reshape(
                    point_shape[0], 1, 1).expand_as(point_indices)
                inds_dim1 = torch.arange(point_shape[1]).reshape(
                    1, point_shape[1], 1).expand_as(point_indices)
                inds_1d = inds_dim0.reshape(
                    -1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape(
                        -1) * mask_shape[2] + point_indices.reshape(-1)
                refined_mask_pred = refined_mask_pred.reshape(-1)
                refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1)
                refined_mask_pred = refined_mask_pred.reshape(*mask_shape)
            else:
                refined_mask_pred = refined_mask_pred.scatter_(
                    2, point_indices, mask_point_pred)

            refined_mask_pred = refined_mask_pred.view(num_rois, channels,
                                                       mask_height, mask_width)

        return refined_mask_pred

    def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs):
        """Export mask branch to onnx which supports batch inference.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            img_metas (list[dict]): Image meta info.
            det_bboxes (Tensor): Bboxes and corresponding scores.
                has shape [N, num_bboxes, 5].
            det_labels (Tensor): class labels of
                shape [N, num_bboxes].

        Returns:
            Tensor: The segmentation results of shape [N, num_bboxes,
                image_height, image_width].
        """
        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            raise RuntimeError('[ONNX Error] Can not record MaskHead '
                               'as it has not been executed this time')
        batch_size = det_bboxes.size(0)
        # if det_bboxes is rescaled to the original image size, we need to
        # rescale it back to the testing scale to obtain RoIs.
        det_bboxes = det_bboxes[..., :4]
        batch_index = torch.arange(
            det_bboxes.size(0), device=det_bboxes.device).float().view(
                -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1)
        mask_rois = torch.cat([batch_index, det_bboxes], dim=-1)
        mask_rois = mask_rois.view(-1, 5)
        mask_results = self._mask_forward(x, mask_rois)
        mask_pred = mask_results['mask_pred']
        max_shape = img_metas[0]['img_shape_for_onnx']
        num_det = det_bboxes.shape[1]
        det_bboxes = det_bboxes.reshape(-1, 4)
        det_labels = det_labels.reshape(-1)

        mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels,
                                                 mask_pred)

        segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes,
                                                  det_labels, self.test_cfg,
                                                  max_shape)
        segm_results = segm_results.reshape(batch_size, num_det, max_shape[0],
                                            max_shape[1])
        return segm_results