File size: 6,949 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_activation_layer, build_norm_layer, constant_init,
                      normal_init)
from mmcv.ops.modulated_deform_conv import ModulatedDeformConv2d
from mmcv.runner import BaseModule

from ..builder import NECKS
from ..utils import DyReLU

# Reference:
# https://github.com/microsoft/DynamicHead
# https://github.com/jshilong/SEPC


class DyDCNv2(nn.Module):
    """ModulatedDeformConv2d with normalization layer used in DyHead.

    This module cannot be configured with `conv_cfg=dict(type='DCNv2')`
    because DyHead calculates offset and mask from middle-level feature.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        stride (int | tuple[int], optional): Stride of the convolution.
            Default: 1.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='GN', num_groups=16, requires_grad=True).
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 stride=1,
                 norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)):
        super().__init__()
        self.with_norm = norm_cfg is not None
        bias = not self.with_norm
        self.conv = ModulatedDeformConv2d(
            in_channels, out_channels, 3, stride=stride, padding=1, bias=bias)
        if self.with_norm:
            self.norm = build_norm_layer(norm_cfg, out_channels)[1]

    def forward(self, x, offset, mask):
        """Forward function."""
        x = self.conv(x.contiguous(), offset.contiguous(), mask)
        if self.with_norm:
            x = self.norm(x)
        return x


class DyHeadBlock(nn.Module):
    """DyHead Block with three types of attention.

    HSigmoid arguments in default act_cfg follow official code, not paper.
    https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        zero_init_offset (bool, optional): Whether to use zero init for
            `spatial_conv_offset`. Default: True.
        act_cfg (dict, optional): Config dict for the last activation layer of
            scale-aware attention. Default: dict(type='HSigmoid', bias=3.0,
            divisor=6.0).
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 zero_init_offset=True,
                 act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)):
        super().__init__()
        self.zero_init_offset = zero_init_offset
        # (offset_x, offset_y, mask) * kernel_size_y * kernel_size_x
        self.offset_and_mask_dim = 3 * 3 * 3
        self.offset_dim = 2 * 3 * 3

        self.spatial_conv_high = DyDCNv2(in_channels, out_channels)
        self.spatial_conv_mid = DyDCNv2(in_channels, out_channels)
        self.spatial_conv_low = DyDCNv2(in_channels, out_channels, stride=2)
        self.spatial_conv_offset = nn.Conv2d(
            in_channels, self.offset_and_mask_dim, 3, padding=1)
        self.scale_attn_module = nn.Sequential(
            nn.AdaptiveAvgPool2d(1), nn.Conv2d(out_channels, 1, 1),
            nn.ReLU(inplace=True), build_activation_layer(act_cfg))
        self.task_attn_module = DyReLU(out_channels)
        self._init_weights()

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, 0, 0.01)
        if self.zero_init_offset:
            constant_init(self.spatial_conv_offset, 0)

    def forward(self, x):
        """Forward function."""
        outs = []
        for level in range(len(x)):
            # calculate offset and mask of DCNv2 from middle-level feature
            offset_and_mask = self.spatial_conv_offset(x[level])
            offset = offset_and_mask[:, :self.offset_dim, :, :]
            mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid()

            mid_feat = self.spatial_conv_mid(x[level], offset, mask)
            sum_feat = mid_feat * self.scale_attn_module(mid_feat)
            summed_levels = 1
            if level > 0:
                low_feat = self.spatial_conv_low(x[level - 1], offset, mask)
                sum_feat = sum_feat + \
                    low_feat * self.scale_attn_module(low_feat)
                summed_levels += 1
            if level < len(x) - 1:
                # this upsample order is weird, but faster than natural order
                # https://github.com/microsoft/DynamicHead/issues/25
                high_feat = F.interpolate(
                    self.spatial_conv_high(x[level + 1], offset, mask),
                    size=x[level].shape[-2:],
                    mode='bilinear',
                    align_corners=True)
                sum_feat = sum_feat + high_feat * \
                    self.scale_attn_module(high_feat)
                summed_levels += 1
            outs.append(self.task_attn_module(sum_feat / summed_levels))

        return outs


@NECKS.register_module()
class DyHead(BaseModule):
    """DyHead neck consisting of multiple DyHead Blocks.

    See `Dynamic Head: Unifying Object Detection Heads with Attentions
    <https://arxiv.org/abs/2106.08322>`_ for details.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        num_blocks (int, optional): Number of DyHead Blocks. Default: 6.
        zero_init_offset (bool, optional): Whether to use zero init for
            `spatial_conv_offset`. Default: True.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_blocks=6,
                 zero_init_offset=True,
                 init_cfg=None):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_blocks = num_blocks
        self.zero_init_offset = zero_init_offset

        dyhead_blocks = []
        for i in range(num_blocks):
            in_channels = self.in_channels if i == 0 else self.out_channels
            dyhead_blocks.append(
                DyHeadBlock(
                    in_channels,
                    self.out_channels,
                    zero_init_offset=zero_init_offset))
        self.dyhead_blocks = nn.Sequential(*dyhead_blocks)

    def forward(self, inputs):
        """Forward function."""
        assert isinstance(inputs, (tuple, list))
        outs = self.dyhead_blocks(inputs)
        return tuple(outs)