Spaces:
Runtime error
Runtime error
File size: 11,202 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.ops import batched_nms
from ..builder import HEADS
from .anchor_head import AnchorHead
@HEADS.register_module()
class RPNHead(AnchorHead):
"""RPN head.
Args:
in_channels (int): Number of channels in the input feature map.
init_cfg (dict or list[dict], optional): Initialization config dict.
num_convs (int): Number of convolution layers in the head. Default 1.
""" # noqa: W605
def __init__(self,
in_channels,
init_cfg=dict(type='Normal', layer='Conv2d', std=0.01),
num_convs=1,
**kwargs):
self.num_convs = num_convs
super(RPNHead, self).__init__(
1, in_channels, init_cfg=init_cfg, **kwargs)
def _init_layers(self):
"""Initialize layers of the head."""
if self.num_convs > 1:
rpn_convs = []
for i in range(self.num_convs):
if i == 0:
in_channels = self.in_channels
else:
in_channels = self.feat_channels
# use ``inplace=False`` to avoid error: one of the variables
# needed for gradient computation has been modified by an
# inplace operation.
rpn_convs.append(
ConvModule(
in_channels,
self.feat_channels,
3,
padding=1,
inplace=False))
self.rpn_conv = nn.Sequential(*rpn_convs)
else:
self.rpn_conv = nn.Conv2d(
self.in_channels, self.feat_channels, 3, padding=1)
self.rpn_cls = nn.Conv2d(self.feat_channels,
self.num_base_priors * self.cls_out_channels,
1)
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_base_priors * 4,
1)
def forward_single(self, x):
"""Forward feature map of a single scale level."""
x = self.rpn_conv(x)
x = F.relu(x, inplace=False)
rpn_cls_score = self.rpn_cls(x)
rpn_bbox_pred = self.rpn_reg(x)
return rpn_cls_score, rpn_bbox_pred
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
losses = super(RPNHead, self).loss(
cls_scores,
bbox_preds,
gt_bboxes,
None,
img_metas,
gt_bboxes_ignore=gt_bboxes_ignore)
return dict(
loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox'])
def _get_bboxes_single(self,
cls_score_list,
bbox_pred_list,
score_factor_list,
mlvl_anchors,
img_meta,
cfg,
rescale=False,
with_nms=True,
**kwargs):
"""Transform outputs of a single image into bbox predictions.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_anchors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has
shape (num_anchors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image. RPN head does not need this value.
mlvl_anchors (list[Tensor]): Anchors of all scale level
each item has shape (num_anchors, 4).
img_meta (dict): Image meta info.
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
Returns:
Tensor: Labeled boxes in shape (n, 5), where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1.
"""
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
img_shape = img_meta['img_shape']
# bboxes from different level should be independent during NMS,
# level_ids are used as labels for batched NMS to separate them
level_ids = []
mlvl_scores = []
mlvl_bbox_preds = []
mlvl_valid_anchors = []
nms_pre = cfg.get('nms_pre', -1)
for level_idx in range(len(cls_score_list)):
rpn_cls_score = cls_score_list[level_idx]
rpn_bbox_pred = bbox_pred_list[level_idx]
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
if self.use_sigmoid_cls:
rpn_cls_score = rpn_cls_score.reshape(-1)
scores = rpn_cls_score.sigmoid()
else:
rpn_cls_score = rpn_cls_score.reshape(-1, 2)
# We set FG labels to [0, num_class-1] and BG label to
# num_class in RPN head since mmdet v2.5, which is unified to
# be consistent with other head since mmdet v2.0. In mmdet v2.0
# to v2.4 we keep BG label as 0 and FG label as 1 in rpn head.
scores = rpn_cls_score.softmax(dim=1)[:, 0]
rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
anchors = mlvl_anchors[level_idx]
if 0 < nms_pre < scores.shape[0]:
# sort is faster than topk
# _, topk_inds = scores.topk(cfg.nms_pre)
ranked_scores, rank_inds = scores.sort(descending=True)
topk_inds = rank_inds[:nms_pre]
scores = ranked_scores[:nms_pre]
rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
anchors = anchors[topk_inds, :]
mlvl_scores.append(scores)
mlvl_bbox_preds.append(rpn_bbox_pred)
mlvl_valid_anchors.append(anchors)
level_ids.append(
scores.new_full((scores.size(0), ),
level_idx,
dtype=torch.long))
return self._bbox_post_process(mlvl_scores, mlvl_bbox_preds,
mlvl_valid_anchors, level_ids, cfg,
img_shape)
def _bbox_post_process(self, mlvl_scores, mlvl_bboxes, mlvl_valid_anchors,
level_ids, cfg, img_shape, **kwargs):
"""bbox post-processing method.
Do the nms operation for bboxes in same level.
Args:
mlvl_scores (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_bboxes, ).
mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
levels of a single image, each item has shape (num_bboxes, 4).
mlvl_valid_anchors (list[Tensor]): Anchors of all scale level
each item has shape (num_bboxes, 4).
level_ids (list[Tensor]): Indexes from all scale levels of a
single image, each item has shape (num_bboxes, ).
cfg (mmcv.Config): Test / postprocessing configuration,
if None, `self.test_cfg` would be used.
img_shape (tuple(int)): The shape of model's input image.
Returns:
Tensor: Labeled boxes in shape (n, 5), where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1.
"""
scores = torch.cat(mlvl_scores)
anchors = torch.cat(mlvl_valid_anchors)
rpn_bbox_pred = torch.cat(mlvl_bboxes)
proposals = self.bbox_coder.decode(
anchors, rpn_bbox_pred, max_shape=img_shape)
ids = torch.cat(level_ids)
if cfg.min_bbox_size >= 0:
w = proposals[:, 2] - proposals[:, 0]
h = proposals[:, 3] - proposals[:, 1]
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
proposals = proposals[valid_mask]
scores = scores[valid_mask]
ids = ids[valid_mask]
if proposals.numel() > 0:
dets, _ = batched_nms(proposals, scores, ids, cfg.nms)
else:
return proposals.new_zeros(0, 5)
return dets[:cfg.max_per_img]
def onnx_export(self, x, img_metas):
"""Test without augmentation.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): Meta info of each image.
Returns:
Tensor: dets of shape [N, num_det, 5].
"""
cls_scores, bbox_preds = self(x)
assert len(cls_scores) == len(bbox_preds)
batch_bboxes, batch_scores = super(RPNHead, self).onnx_export(
cls_scores, bbox_preds, img_metas=img_metas, with_nms=False)
# Use ONNX::NonMaxSuppression in deployment
from mmdet.core.export import add_dummy_nms_for_onnx
cfg = copy.deepcopy(self.test_cfg)
score_threshold = cfg.nms.get('score_thr', 0.0)
nms_pre = cfg.get('deploy_nms_pre', -1)
# Different from the normal forward doing NMS level by level,
# we do NMS across all levels when exporting ONNX.
dets, _ = add_dummy_nms_for_onnx(batch_bboxes, batch_scores,
cfg.max_per_img,
cfg.nms.iou_threshold,
score_threshold, nms_pre,
cfg.max_per_img)
return dets
|