Spaces:
Runtime error
Runtime error
File size: 4,566 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init
from ..builder import HEADS
from .anchor_head import AnchorHead
@HEADS.register_module()
class RetinaSepBNHead(AnchorHead):
""""RetinaHead with separate BN.
In RetinaHead, conv/norm layers are shared across different FPN levels,
while in RetinaSepBNHead, conv layers are shared across different FPN
levels, but BN layers are separated.
"""
def __init__(self,
num_classes,
num_ins,
in_channels,
stacked_convs=4,
conv_cfg=None,
norm_cfg=None,
init_cfg=None,
**kwargs):
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.num_ins = num_ins
super(RetinaSepBNHead, self).__init__(
num_classes, in_channels, init_cfg=init_cfg, **kwargs)
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.num_ins):
cls_convs = nn.ModuleList()
reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.cls_convs.append(cls_convs)
self.reg_convs.append(reg_convs)
for i in range(self.stacked_convs):
for j in range(1, self.num_ins):
self.cls_convs[j][i].conv = self.cls_convs[0][i].conv
self.reg_convs[j][i].conv = self.reg_convs[0][i].conv
self.retina_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
3,
padding=1)
self.retina_reg = nn.Conv2d(
self.feat_channels, self.num_base_priors * 4, 3, padding=1)
def init_weights(self):
"""Initialize weights of the head."""
super(RetinaSepBNHead, self).init_weights()
for m in self.cls_convs[0]:
normal_init(m.conv, std=0.01)
for m in self.reg_convs[0]:
normal_init(m.conv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.retina_cls, std=0.01, bias=bias_cls)
normal_init(self.retina_reg, std=0.01)
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for i, x in enumerate(feats):
cls_feat = feats[i]
reg_feat = feats[i]
for cls_conv in self.cls_convs[i]:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs[i]:
reg_feat = reg_conv(reg_feat)
cls_score = self.retina_cls(cls_feat)
bbox_pred = self.retina_reg(reg_feat)
cls_scores.append(cls_score)
bbox_preds.append(bbox_pred)
return cls_scores, bbox_preds
|