File size: 5,598 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from mmdet.core import multi_apply
from ..builder import HEADS
from ..losses import CrossEntropyLoss, SmoothL1Loss, carl_loss, isr_p
from .ssd_head import SSDHead


# TODO: add loss evaluator for SSD
@HEADS.register_module()
class PISASSDHead(SSDHead):

    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes of each image
                with shape (num_obj, 4).
            gt_labels (list[Tensor]): Ground truth labels of each image
                with shape (num_obj, 4).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image.
                Default: None.

        Returns:
            dict: Loss dict, comprise classification loss regression loss and
                carl loss.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=1,
            unmap_outputs=False,
            return_sampling_results=True)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets

        num_images = len(img_metas)
        all_cls_scores = torch.cat([
            s.permute(0, 2, 3, 1).reshape(
                num_images, -1, self.cls_out_channels) for s in cls_scores
        ], 1)
        all_labels = torch.cat(labels_list, -1).view(num_images, -1)
        all_label_weights = torch.cat(label_weights_list,
                                      -1).view(num_images, -1)
        all_bbox_preds = torch.cat([
            b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
            for b in bbox_preds
        ], -2)
        all_bbox_targets = torch.cat(bbox_targets_list,
                                     -2).view(num_images, -1, 4)
        all_bbox_weights = torch.cat(bbox_weights_list,
                                     -2).view(num_images, -1, 4)

        # concat all level anchors to a single tensor
        all_anchors = []
        for i in range(num_images):
            all_anchors.append(torch.cat(anchor_list[i]))

        isr_cfg = self.train_cfg.get('isr', None)
        all_targets = (all_labels.view(-1), all_label_weights.view(-1),
                       all_bbox_targets.view(-1,
                                             4), all_bbox_weights.view(-1, 4))
        # apply ISR-P
        if isr_cfg is not None:
            all_targets = isr_p(
                all_cls_scores.view(-1, all_cls_scores.size(-1)),
                all_bbox_preds.view(-1, 4),
                all_targets,
                torch.cat(all_anchors),
                sampling_results_list,
                loss_cls=CrossEntropyLoss(),
                bbox_coder=self.bbox_coder,
                **self.train_cfg.isr,
                num_class=self.num_classes)
            (new_labels, new_label_weights, new_bbox_targets,
             new_bbox_weights) = all_targets
            all_labels = new_labels.view(all_labels.shape)
            all_label_weights = new_label_weights.view(all_label_weights.shape)
            all_bbox_targets = new_bbox_targets.view(all_bbox_targets.shape)
            all_bbox_weights = new_bbox_weights.view(all_bbox_weights.shape)

        # add CARL loss
        carl_loss_cfg = self.train_cfg.get('carl', None)
        if carl_loss_cfg is not None:
            loss_carl = carl_loss(
                all_cls_scores.view(-1, all_cls_scores.size(-1)),
                all_targets[0],
                all_bbox_preds.view(-1, 4),
                all_targets[2],
                SmoothL1Loss(beta=1.),
                **self.train_cfg.carl,
                avg_factor=num_total_pos,
                num_class=self.num_classes)

        # check NaN and Inf
        assert torch.isfinite(all_cls_scores).all().item(), \
            'classification scores become infinite or NaN!'
        assert torch.isfinite(all_bbox_preds).all().item(), \
            'bbox predications become infinite or NaN!'

        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            all_cls_scores,
            all_bbox_preds,
            all_anchors,
            all_labels,
            all_label_weights,
            all_bbox_targets,
            all_bbox_weights,
            num_total_samples=num_total_pos)
        loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
        if carl_loss_cfg is not None:
            loss_dict.update(loss_carl)
        return loss_dict