File size: 23,106 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule, ModuleList, Sequential
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES
from .resnet import BasicBlock, Bottleneck


class HRModule(BaseModule):
    """High-Resolution Module for HRNet.

    In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange
    is in this module.
    """

    def __init__(self,
                 num_branches,
                 blocks,
                 num_blocks,
                 in_channels,
                 num_channels,
                 multiscale_output=True,
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 block_init_cfg=None,
                 init_cfg=None):
        super(HRModule, self).__init__(init_cfg)
        self.block_init_cfg = block_init_cfg
        self._check_branches(num_branches, num_blocks, in_channels,
                             num_channels)

        self.in_channels = in_channels
        self.num_branches = num_branches

        self.multiscale_output = multiscale_output
        self.norm_cfg = norm_cfg
        self.conv_cfg = conv_cfg
        self.with_cp = with_cp
        self.branches = self._make_branches(num_branches, blocks, num_blocks,
                                            num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(inplace=False)

    def _check_branches(self, num_branches, num_blocks, in_channels,
                        num_channels):
        if num_branches != len(num_blocks):
            error_msg = f'NUM_BRANCHES({num_branches}) ' \
                        f'!= NUM_BLOCKS({len(num_blocks)})'
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = f'NUM_BRANCHES({num_branches}) ' \
                        f'!= NUM_CHANNELS({len(num_channels)})'
            raise ValueError(error_msg)

        if num_branches != len(in_channels):
            error_msg = f'NUM_BRANCHES({num_branches}) ' \
                        f'!= NUM_INCHANNELS({len(in_channels)})'
            raise ValueError(error_msg)

    def _make_one_branch(self,
                         branch_index,
                         block,
                         num_blocks,
                         num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
                self.in_channels[branch_index] != \
                num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                build_conv_layer(
                    self.conv_cfg,
                    self.in_channels[branch_index],
                    num_channels[branch_index] * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False),
                build_norm_layer(self.norm_cfg, num_channels[branch_index] *
                                 block.expansion)[1])

        layers = []
        layers.append(
            block(
                self.in_channels[branch_index],
                num_channels[branch_index],
                stride,
                downsample=downsample,
                with_cp=self.with_cp,
                norm_cfg=self.norm_cfg,
                conv_cfg=self.conv_cfg,
                init_cfg=self.block_init_cfg))
        self.in_channels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(
                block(
                    self.in_channels[branch_index],
                    num_channels[branch_index],
                    with_cp=self.with_cp,
                    norm_cfg=self.norm_cfg,
                    conv_cfg=self.conv_cfg,
                    init_cfg=self.block_init_cfg))

        return Sequential(*layers)

    def _make_branches(self, num_branches, block, num_blocks, num_channels):
        branches = []

        for i in range(num_branches):
            branches.append(
                self._make_one_branch(i, block, num_blocks, num_channels))

        return ModuleList(branches)

    def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        in_channels = self.in_channels
        fuse_layers = []
        num_out_branches = num_branches if self.multiscale_output else 1
        for i in range(num_out_branches):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(
                        nn.Sequential(
                            build_conv_layer(
                                self.conv_cfg,
                                in_channels[j],
                                in_channels[i],
                                kernel_size=1,
                                stride=1,
                                padding=0,
                                bias=False),
                            build_norm_layer(self.norm_cfg, in_channels[i])[1],
                            nn.Upsample(
                                scale_factor=2**(j - i), mode='nearest')))
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv_downsamples = []
                    for k in range(i - j):
                        if k == i - j - 1:
                            conv_downsamples.append(
                                nn.Sequential(
                                    build_conv_layer(
                                        self.conv_cfg,
                                        in_channels[j],
                                        in_channels[i],
                                        kernel_size=3,
                                        stride=2,
                                        padding=1,
                                        bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[i])[1]))
                        else:
                            conv_downsamples.append(
                                nn.Sequential(
                                    build_conv_layer(
                                        self.conv_cfg,
                                        in_channels[j],
                                        in_channels[j],
                                        kernel_size=3,
                                        stride=2,
                                        padding=1,
                                        bias=False),
                                    build_norm_layer(self.norm_cfg,
                                                     in_channels[j])[1],
                                    nn.ReLU(inplace=False)))
                    fuse_layer.append(nn.Sequential(*conv_downsamples))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)

    def forward(self, x):
        """Forward function."""
        if self.num_branches == 1:
            return [self.branches[0](x[0])]

        for i in range(self.num_branches):
            x[i] = self.branches[i](x[i])

        x_fuse = []
        for i in range(len(self.fuse_layers)):
            y = 0
            for j in range(self.num_branches):
                if i == j:
                    y += x[j]
                else:
                    y += self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))
        return x_fuse


@BACKBONES.register_module()
class HRNet(BaseModule):
    """HRNet backbone.

    `High-Resolution Representations for Labeling Pixels and Regions
    arXiv: <https://arxiv.org/abs/1904.04514>`_.

    Args:
        extra (dict): Detailed configuration for each stage of HRNet.
            There must be 4 stages, the configuration for each stage must have
            5 keys:

                - num_modules(int): The number of HRModule in this stage.
                - num_branches(int): The number of branches in the HRModule.
                - block(str): The type of convolution block.
                - num_blocks(tuple): The number of blocks in each branch.
                    The length must be equal to num_branches.
                - num_channels(tuple): The number of channels in each branch.
                    The length must be equal to num_branches.
        in_channels (int): Number of input image channels. Default: 3.
        conv_cfg (dict): Dictionary to construct and config conv layer.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: True.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: False.
        multiscale_output (bool): Whether to output multi-level features
            produced by multiple branches. If False, only the first level
            feature will be output. Default: True.
        pretrained (str, optional): Model pretrained path. Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.

    Example:
        >>> from mmdet.models import HRNet
        >>> import torch
        >>> extra = dict(
        >>>     stage1=dict(
        >>>         num_modules=1,
        >>>         num_branches=1,
        >>>         block='BOTTLENECK',
        >>>         num_blocks=(4, ),
        >>>         num_channels=(64, )),
        >>>     stage2=dict(
        >>>         num_modules=1,
        >>>         num_branches=2,
        >>>         block='BASIC',
        >>>         num_blocks=(4, 4),
        >>>         num_channels=(32, 64)),
        >>>     stage3=dict(
        >>>         num_modules=4,
        >>>         num_branches=3,
        >>>         block='BASIC',
        >>>         num_blocks=(4, 4, 4),
        >>>         num_channels=(32, 64, 128)),
        >>>     stage4=dict(
        >>>         num_modules=3,
        >>>         num_branches=4,
        >>>         block='BASIC',
        >>>         num_blocks=(4, 4, 4, 4),
        >>>         num_channels=(32, 64, 128, 256)))
        >>> self = HRNet(extra, in_channels=1)
        >>> self.eval()
        >>> inputs = torch.rand(1, 1, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 32, 8, 8)
        (1, 64, 4, 4)
        (1, 128, 2, 2)
        (1, 256, 1, 1)
    """

    blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}

    def __init__(self,
                 extra,
                 in_channels=3,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 norm_eval=True,
                 with_cp=False,
                 zero_init_residual=False,
                 multiscale_output=True,
                 pretrained=None,
                 init_cfg=None):
        super(HRNet, self).__init__(init_cfg)

        self.pretrained = pretrained
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

        # Assert configurations of 4 stages are in extra
        assert 'stage1' in extra and 'stage2' in extra \
               and 'stage3' in extra and 'stage4' in extra
        # Assert whether the length of `num_blocks` and `num_channels` are
        # equal to `num_branches`
        for i in range(4):
            cfg = extra[f'stage{i + 1}']
            assert len(cfg['num_blocks']) == cfg['num_branches'] and \
                   len(cfg['num_channels']) == cfg['num_branches']

        self.extra = extra
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        # stem net
        self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)

        self.conv1 = build_conv_layer(
            self.conv_cfg,
            in_channels,
            64,
            kernel_size=3,
            stride=2,
            padding=1,
            bias=False)

        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            self.conv_cfg,
            64,
            64,
            kernel_size=3,
            stride=2,
            padding=1,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.relu = nn.ReLU(inplace=True)

        # stage 1
        self.stage1_cfg = self.extra['stage1']
        num_channels = self.stage1_cfg['num_channels'][0]
        block_type = self.stage1_cfg['block']
        num_blocks = self.stage1_cfg['num_blocks'][0]

        block = self.blocks_dict[block_type]
        stage1_out_channels = num_channels * block.expansion
        self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)

        # stage 2
        self.stage2_cfg = self.extra['stage2']
        num_channels = self.stage2_cfg['num_channels']
        block_type = self.stage2_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition1 = self._make_transition_layer([stage1_out_channels],
                                                       num_channels)
        self.stage2, pre_stage_channels = self._make_stage(
            self.stage2_cfg, num_channels)

        # stage 3
        self.stage3_cfg = self.extra['stage3']
        num_channels = self.stage3_cfg['num_channels']
        block_type = self.stage3_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition2 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage3, pre_stage_channels = self._make_stage(
            self.stage3_cfg, num_channels)

        # stage 4
        self.stage4_cfg = self.extra['stage4']
        num_channels = self.stage4_cfg['num_channels']
        block_type = self.stage4_cfg['block']

        block = self.blocks_dict[block_type]
        num_channels = [channel * block.expansion for channel in num_channels]
        self.transition3 = self._make_transition_layer(pre_stage_channels,
                                                       num_channels)
        self.stage4, pre_stage_channels = self._make_stage(
            self.stage4_cfg, num_channels, multiscale_output=multiscale_output)

    @property
    def norm1(self):
        """nn.Module: the normalization layer named "norm1" """
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        """nn.Module: the normalization layer named "norm2" """
        return getattr(self, self.norm2_name)

    def _make_transition_layer(self, num_channels_pre_layer,
                               num_channels_cur_layer):
        num_branches_cur = len(num_channels_cur_layer)
        num_branches_pre = len(num_channels_pre_layer)

        transition_layers = []
        for i in range(num_branches_cur):
            if i < num_branches_pre:
                if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
                    transition_layers.append(
                        nn.Sequential(
                            build_conv_layer(
                                self.conv_cfg,
                                num_channels_pre_layer[i],
                                num_channels_cur_layer[i],
                                kernel_size=3,
                                stride=1,
                                padding=1,
                                bias=False),
                            build_norm_layer(self.norm_cfg,
                                             num_channels_cur_layer[i])[1],
                            nn.ReLU(inplace=True)))
                else:
                    transition_layers.append(None)
            else:
                conv_downsamples = []
                for j in range(i + 1 - num_branches_pre):
                    in_channels = num_channels_pre_layer[-1]
                    out_channels = num_channels_cur_layer[i] \
                        if j == i - num_branches_pre else in_channels
                    conv_downsamples.append(
                        nn.Sequential(
                            build_conv_layer(
                                self.conv_cfg,
                                in_channels,
                                out_channels,
                                kernel_size=3,
                                stride=2,
                                padding=1,
                                bias=False),
                            build_norm_layer(self.norm_cfg, out_channels)[1],
                            nn.ReLU(inplace=True)))
                transition_layers.append(nn.Sequential(*conv_downsamples))

        return nn.ModuleList(transition_layers)

    def _make_layer(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                build_conv_layer(
                    self.conv_cfg,
                    inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False),
                build_norm_layer(self.norm_cfg, planes * block.expansion)[1])

        layers = []
        block_init_cfg = None
        if self.pretrained is None and not hasattr(
                self, 'init_cfg') and self.zero_init_residual:
            if block is BasicBlock:
                block_init_cfg = dict(
                    type='Constant', val=0, override=dict(name='norm2'))
            elif block is Bottleneck:
                block_init_cfg = dict(
                    type='Constant', val=0, override=dict(name='norm3'))
        layers.append(
            block(
                inplanes,
                planes,
                stride,
                downsample=downsample,
                with_cp=self.with_cp,
                norm_cfg=self.norm_cfg,
                conv_cfg=self.conv_cfg,
                init_cfg=block_init_cfg,
            ))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(
                    inplanes,
                    planes,
                    with_cp=self.with_cp,
                    norm_cfg=self.norm_cfg,
                    conv_cfg=self.conv_cfg,
                    init_cfg=block_init_cfg))

        return Sequential(*layers)

    def _make_stage(self, layer_config, in_channels, multiscale_output=True):
        num_modules = layer_config['num_modules']
        num_branches = layer_config['num_branches']
        num_blocks = layer_config['num_blocks']
        num_channels = layer_config['num_channels']
        block = self.blocks_dict[layer_config['block']]

        hr_modules = []
        block_init_cfg = None
        if self.pretrained is None and not hasattr(
                self, 'init_cfg') and self.zero_init_residual:
            if block is BasicBlock:
                block_init_cfg = dict(
                    type='Constant', val=0, override=dict(name='norm2'))
            elif block is Bottleneck:
                block_init_cfg = dict(
                    type='Constant', val=0, override=dict(name='norm3'))

        for i in range(num_modules):
            # multi_scale_output is only used for the last module
            if not multiscale_output and i == num_modules - 1:
                reset_multiscale_output = False
            else:
                reset_multiscale_output = True

            hr_modules.append(
                HRModule(
                    num_branches,
                    block,
                    num_blocks,
                    in_channels,
                    num_channels,
                    reset_multiscale_output,
                    with_cp=self.with_cp,
                    norm_cfg=self.norm_cfg,
                    conv_cfg=self.conv_cfg,
                    block_init_cfg=block_init_cfg))

        return Sequential(*hr_modules), in_channels

    def forward(self, x):
        """Forward function."""
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.norm2(x)
        x = self.relu(x)
        x = self.layer1(x)

        x_list = []
        for i in range(self.stage2_cfg['num_branches']):
            if self.transition1[i] is not None:
                x_list.append(self.transition1[i](x))
            else:
                x_list.append(x)
        y_list = self.stage2(x_list)

        x_list = []
        for i in range(self.stage3_cfg['num_branches']):
            if self.transition2[i] is not None:
                x_list.append(self.transition2[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        y_list = self.stage3(x_list)

        x_list = []
        for i in range(self.stage4_cfg['num_branches']):
            if self.transition3[i] is not None:
                x_list.append(self.transition3[i](y_list[-1]))
            else:
                x_list.append(y_list[i])
        y_list = self.stage4(x_list)

        return y_list

    def train(self, mode=True):
        """Convert the model into training mode will keeping the normalization
        layer freezed."""
        super(HRNet, self).train(mode)
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()