File size: 118,461 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import inspect
import math
import warnings

import cv2
import mmcv
import numpy as np
from numpy import random

from mmdet.core import BitmapMasks, PolygonMasks, find_inside_bboxes
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps
from mmdet.utils import log_img_scale
from ..builder import PIPELINES

try:
    from imagecorruptions import corrupt
except ImportError:
    corrupt = None

try:
    import albumentations
    from albumentations import Compose
except ImportError:
    albumentations = None
    Compose = None


@PIPELINES.register_module()
class Resize:
    """Resize images & bbox & mask.

    This transform resizes the input image to some scale. Bboxes and masks are
    then resized with the same scale factor. If the input dict contains the key
    "scale", then the scale in the input dict is used, otherwise the specified
    scale in the init method is used. If the input dict contains the key
    "scale_factor" (if MultiScaleFlipAug does not give img_scale but
    scale_factor), the actual scale will be computed by image shape and
    scale_factor.

    `img_scale` can either be a tuple (single-scale) or a list of tuple
    (multi-scale). There are 3 multiscale modes:

    - ``ratio_range is not None``: randomly sample a ratio from the ratio \
      range and multiply it with the image scale.
    - ``ratio_range is None`` and ``multiscale_mode == "range"``: randomly \
      sample a scale from the multiscale range.
    - ``ratio_range is None`` and ``multiscale_mode == "value"``: randomly \
      sample a scale from multiple scales.

    Args:
        img_scale (tuple or list[tuple]): Images scales for resizing.
        multiscale_mode (str): Either "range" or "value".
        ratio_range (tuple[float]): (min_ratio, max_ratio)
        keep_ratio (bool): Whether to keep the aspect ratio when resizing the
            image.
        bbox_clip_border (bool, optional): Whether to clip the objects outside
            the border of the image. In some dataset like MOT17, the gt bboxes
            are allowed to cross the border of images. Therefore, we don't
            need to clip the gt bboxes in these cases. Defaults to True.
        backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
            These two backends generates slightly different results. Defaults
            to 'cv2'.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend.
        override (bool, optional): Whether to override `scale` and
            `scale_factor` so as to call resize twice. Default False. If True,
            after the first resizing, the existed `scale` and `scale_factor`
            will be ignored so the second resizing can be allowed.
            This option is a work-around for multiple times of resize in DETR.
            Defaults to False.
    """

    def __init__(self,
                 img_scale=None,
                 multiscale_mode='range',
                 ratio_range=None,
                 keep_ratio=True,
                 bbox_clip_border=True,
                 backend='cv2',
                 interpolation='bilinear',
                 override=False):
        if img_scale is None:
            self.img_scale = None
        else:
            if isinstance(img_scale, list):
                self.img_scale = img_scale
            else:
                self.img_scale = [img_scale]
            assert mmcv.is_list_of(self.img_scale, tuple)

        if ratio_range is not None:
            # mode 1: given a scale and a range of image ratio
            assert len(self.img_scale) == 1
        else:
            # mode 2: given multiple scales or a range of scales
            assert multiscale_mode in ['value', 'range']

        self.backend = backend
        self.multiscale_mode = multiscale_mode
        self.ratio_range = ratio_range
        self.keep_ratio = keep_ratio
        # TODO: refactor the override option in Resize
        self.interpolation = interpolation
        self.override = override
        self.bbox_clip_border = bbox_clip_border

    @staticmethod
    def random_select(img_scales):
        """Randomly select an img_scale from given candidates.

        Args:
            img_scales (list[tuple]): Images scales for selection.

        Returns:
            (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, \
                where ``img_scale`` is the selected image scale and \
                ``scale_idx`` is the selected index in the given candidates.
        """

        assert mmcv.is_list_of(img_scales, tuple)
        scale_idx = np.random.randint(len(img_scales))
        img_scale = img_scales[scale_idx]
        return img_scale, scale_idx

    @staticmethod
    def random_sample(img_scales):
        """Randomly sample an img_scale when ``multiscale_mode=='range'``.

        Args:
            img_scales (list[tuple]): Images scale range for sampling.
                There must be two tuples in img_scales, which specify the lower
                and upper bound of image scales.

        Returns:
            (tuple, None): Returns a tuple ``(img_scale, None)``, where \
                ``img_scale`` is sampled scale and None is just a placeholder \
                to be consistent with :func:`random_select`.
        """

        assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2
        img_scale_long = [max(s) for s in img_scales]
        img_scale_short = [min(s) for s in img_scales]
        long_edge = np.random.randint(
            min(img_scale_long),
            max(img_scale_long) + 1)
        short_edge = np.random.randint(
            min(img_scale_short),
            max(img_scale_short) + 1)
        img_scale = (long_edge, short_edge)
        return img_scale, None

    @staticmethod
    def random_sample_ratio(img_scale, ratio_range):
        """Randomly sample an img_scale when ``ratio_range`` is specified.

        A ratio will be randomly sampled from the range specified by
        ``ratio_range``. Then it would be multiplied with ``img_scale`` to
        generate sampled scale.

        Args:
            img_scale (tuple): Images scale base to multiply with ratio.
            ratio_range (tuple[float]): The minimum and maximum ratio to scale
                the ``img_scale``.

        Returns:
            (tuple, None): Returns a tuple ``(scale, None)``, where \
                ``scale`` is sampled ratio multiplied with ``img_scale`` and \
                None is just a placeholder to be consistent with \
                :func:`random_select`.
        """

        assert isinstance(img_scale, tuple) and len(img_scale) == 2
        min_ratio, max_ratio = ratio_range
        assert min_ratio <= max_ratio
        ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
        scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio)
        return scale, None

    def _random_scale(self, results):
        """Randomly sample an img_scale according to ``ratio_range`` and
        ``multiscale_mode``.

        If ``ratio_range`` is specified, a ratio will be sampled and be
        multiplied with ``img_scale``.
        If multiple scales are specified by ``img_scale``, a scale will be
        sampled according to ``multiscale_mode``.
        Otherwise, single scale will be used.

        Args:
            results (dict): Result dict from :obj:`dataset`.

        Returns:
            dict: Two new keys 'scale` and 'scale_idx` are added into \
                ``results``, which would be used by subsequent pipelines.
        """

        if self.ratio_range is not None:
            scale, scale_idx = self.random_sample_ratio(
                self.img_scale[0], self.ratio_range)
        elif len(self.img_scale) == 1:
            scale, scale_idx = self.img_scale[0], 0
        elif self.multiscale_mode == 'range':
            scale, scale_idx = self.random_sample(self.img_scale)
        elif self.multiscale_mode == 'value':
            scale, scale_idx = self.random_select(self.img_scale)
        else:
            raise NotImplementedError

        results['scale'] = scale
        results['scale_idx'] = scale_idx

    def _resize_img(self, results):
        """Resize images with ``results['scale']``."""
        for key in results.get('img_fields', ['img']):
            if self.keep_ratio:
                img, scale_factor = mmcv.imrescale(
                    results[key],
                    results['scale'],
                    return_scale=True,
                    interpolation=self.interpolation,
                    backend=self.backend)
                # the w_scale and h_scale has minor difference
                # a real fix should be done in the mmcv.imrescale in the future
                new_h, new_w = img.shape[:2]
                h, w = results[key].shape[:2]
                w_scale = new_w / w
                h_scale = new_h / h
            else:
                img, w_scale, h_scale = mmcv.imresize(
                    results[key],
                    results['scale'],
                    return_scale=True,
                    interpolation=self.interpolation,
                    backend=self.backend)
            results[key] = img

            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
            results['img_shape'] = img.shape
            # in case that there is no padding
            results['pad_shape'] = img.shape
            results['scale_factor'] = scale_factor
            results['keep_ratio'] = self.keep_ratio

    def _resize_bboxes(self, results):
        """Resize bounding boxes with ``results['scale_factor']``."""
        for key in results.get('bbox_fields', []):
            bboxes = results[key] * results['scale_factor']
            if self.bbox_clip_border:
                img_shape = results['img_shape']
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            results[key] = bboxes

    def _resize_masks(self, results):
        """Resize masks with ``results['scale']``"""
        for key in results.get('mask_fields', []):
            if results[key] is None:
                continue
            if self.keep_ratio:
                results[key] = results[key].rescale(results['scale'])
            else:
                results[key] = results[key].resize(results['img_shape'][:2])

    def _resize_seg(self, results):
        """Resize semantic segmentation map with ``results['scale']``."""
        for key in results.get('seg_fields', []):
            if self.keep_ratio:
                gt_seg = mmcv.imrescale(
                    results[key],
                    results['scale'],
                    interpolation='nearest',
                    backend=self.backend)
            else:
                gt_seg = mmcv.imresize(
                    results[key],
                    results['scale'],
                    interpolation='nearest',
                    backend=self.backend)
            results[key] = gt_seg

    def __call__(self, results):
        """Call function to resize images, bounding boxes, masks, semantic
        segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \
                'keep_ratio' keys are added into result dict.
        """

        if 'scale' not in results:
            if 'scale_factor' in results:
                img_shape = results['img'].shape[:2]
                scale_factor = results['scale_factor']
                assert isinstance(scale_factor, float)
                results['scale'] = tuple(
                    [int(x * scale_factor) for x in img_shape][::-1])
            else:
                self._random_scale(results)
        else:
            if not self.override:
                assert 'scale_factor' not in results, (
                    'scale and scale_factor cannot be both set.')
            else:
                results.pop('scale')
                if 'scale_factor' in results:
                    results.pop('scale_factor')
                self._random_scale(results)

        self._resize_img(results)
        self._resize_bboxes(results)
        self._resize_masks(results)
        self._resize_seg(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'multiscale_mode={self.multiscale_mode}, '
        repr_str += f'ratio_range={self.ratio_range}, '
        repr_str += f'keep_ratio={self.keep_ratio}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class RandomFlip:
    """Flip the image & bbox & mask.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    When random flip is enabled, ``flip_ratio``/``direction`` can either be a
    float/string or tuple of float/string. There are 3 flip modes:

    - ``flip_ratio`` is float, ``direction`` is string: the image will be
        ``direction``ly flipped with probability of ``flip_ratio`` .
        E.g., ``flip_ratio=0.5``, ``direction='horizontal'``,
        then image will be horizontally flipped with probability of 0.5.
    - ``flip_ratio`` is float, ``direction`` is list of string: the image will
        be ``direction[i]``ly flipped with probability of
        ``flip_ratio/len(direction)``.
        E.g., ``flip_ratio=0.5``, ``direction=['horizontal', 'vertical']``,
        then image will be horizontally flipped with probability of 0.25,
        vertically with probability of 0.25.
    - ``flip_ratio`` is list of float, ``direction`` is list of string:
        given ``len(flip_ratio) == len(direction)``, the image will
        be ``direction[i]``ly flipped with probability of ``flip_ratio[i]``.
        E.g., ``flip_ratio=[0.3, 0.5]``, ``direction=['horizontal',
        'vertical']``, then image will be horizontally flipped with probability
        of 0.3, vertically with probability of 0.5.

    Args:
        flip_ratio (float | list[float], optional): The flipping probability.
            Default: None.
        direction(str | list[str], optional): The flipping direction. Options
            are 'horizontal', 'vertical', 'diagonal'. Default: 'horizontal'.
            If input is a list, the length must equal ``flip_ratio``. Each
            element in ``flip_ratio`` indicates the flip probability of
            corresponding direction.
    """

    def __init__(self, flip_ratio=None, direction='horizontal'):
        if isinstance(flip_ratio, list):
            assert mmcv.is_list_of(flip_ratio, float)
            assert 0 <= sum(flip_ratio) <= 1
        elif isinstance(flip_ratio, float):
            assert 0 <= flip_ratio <= 1
        elif flip_ratio is None:
            pass
        else:
            raise ValueError('flip_ratios must be None, float, '
                             'or list of float')
        self.flip_ratio = flip_ratio

        valid_directions = ['horizontal', 'vertical', 'diagonal']
        if isinstance(direction, str):
            assert direction in valid_directions
        elif isinstance(direction, list):
            assert mmcv.is_list_of(direction, str)
            assert set(direction).issubset(set(valid_directions))
        else:
            raise ValueError('direction must be either str or list of str')
        self.direction = direction

        if isinstance(flip_ratio, list):
            assert len(self.flip_ratio) == len(self.direction)

    def bbox_flip(self, bboxes, img_shape, direction):
        """Flip bboxes horizontally.

        Args:
            bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
            img_shape (tuple[int]): Image shape (height, width)
            direction (str): Flip direction. Options are 'horizontal',
                'vertical'.

        Returns:
            numpy.ndarray: Flipped bounding boxes.
        """

        assert bboxes.shape[-1] % 4 == 0
        flipped = bboxes.copy()
        if direction == 'horizontal':
            w = img_shape[1]
            flipped[..., 0::4] = w - bboxes[..., 2::4]
            flipped[..., 2::4] = w - bboxes[..., 0::4]
        elif direction == 'vertical':
            h = img_shape[0]
            flipped[..., 1::4] = h - bboxes[..., 3::4]
            flipped[..., 3::4] = h - bboxes[..., 1::4]
        elif direction == 'diagonal':
            w = img_shape[1]
            h = img_shape[0]
            flipped[..., 0::4] = w - bboxes[..., 2::4]
            flipped[..., 1::4] = h - bboxes[..., 3::4]
            flipped[..., 2::4] = w - bboxes[..., 0::4]
            flipped[..., 3::4] = h - bboxes[..., 1::4]
        else:
            raise ValueError(f"Invalid flipping direction '{direction}'")
        return flipped

    def __call__(self, results):
        """Call function to flip bounding boxes, masks, semantic segmentation
        maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction' keys are added \
                into result dict.
        """

        if 'flip' not in results:
            if isinstance(self.direction, list):
                # None means non-flip
                direction_list = self.direction + [None]
            else:
                # None means non-flip
                direction_list = [self.direction, None]

            if isinstance(self.flip_ratio, list):
                non_flip_ratio = 1 - sum(self.flip_ratio)
                flip_ratio_list = self.flip_ratio + [non_flip_ratio]
            else:
                non_flip_ratio = 1 - self.flip_ratio
                # exclude non-flip
                single_ratio = self.flip_ratio / (len(direction_list) - 1)
                flip_ratio_list = [single_ratio] * (len(direction_list) -
                                                    1) + [non_flip_ratio]

            cur_dir = np.random.choice(direction_list, p=flip_ratio_list)

            results['flip'] = cur_dir is not None
        if 'flip_direction' not in results:
            results['flip_direction'] = cur_dir
        if results['flip']:
            # flip image
            for key in results.get('img_fields', ['img']):
                results[key] = mmcv.imflip(
                    results[key], direction=results['flip_direction'])
            # flip bboxes
            for key in results.get('bbox_fields', []):
                results[key] = self.bbox_flip(results[key],
                                              results['img_shape'],
                                              results['flip_direction'])
            # flip masks
            for key in results.get('mask_fields', []):
                results[key] = results[key].flip(results['flip_direction'])

            # flip segs
            for key in results.get('seg_fields', []):
                results[key] = mmcv.imflip(
                    results[key], direction=results['flip_direction'])
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(flip_ratio={self.flip_ratio})'


@PIPELINES.register_module()
class RandomShift:
    """Shift the image and box given shift pixels and probability.

    Args:
        shift_ratio (float): Probability of shifts. Default 0.5.
        max_shift_px (int): The max pixels for shifting. Default 32.
        filter_thr_px (int): The width and height threshold for filtering.
            The bbox and the rest of the targets below the width and
            height threshold will be filtered. Default 1.
    """

    def __init__(self, shift_ratio=0.5, max_shift_px=32, filter_thr_px=1):
        assert 0 <= shift_ratio <= 1
        assert max_shift_px >= 0
        self.shift_ratio = shift_ratio
        self.max_shift_px = max_shift_px
        self.filter_thr_px = int(filter_thr_px)
        # The key correspondence from bboxes to labels.
        self.bbox2label = {
            'gt_bboxes': 'gt_labels',
            'gt_bboxes_ignore': 'gt_labels_ignore'
        }

    def __call__(self, results):
        """Call function to random shift images, bounding boxes.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Shift results.
        """
        if random.random() < self.shift_ratio:
            img_shape = results['img'].shape[:2]

            random_shift_x = random.randint(-self.max_shift_px,
                                            self.max_shift_px)
            random_shift_y = random.randint(-self.max_shift_px,
                                            self.max_shift_px)
            new_x = max(0, random_shift_x)
            ori_x = max(0, -random_shift_x)
            new_y = max(0, random_shift_y)
            ori_y = max(0, -random_shift_y)

            # TODO: support mask and semantic segmentation maps.
            for key in results.get('bbox_fields', []):
                bboxes = results[key].copy()
                bboxes[..., 0::2] += random_shift_x
                bboxes[..., 1::2] += random_shift_y

                # clip border
                bboxes[..., 0::2] = np.clip(bboxes[..., 0::2], 0, img_shape[1])
                bboxes[..., 1::2] = np.clip(bboxes[..., 1::2], 0, img_shape[0])

                # remove invalid bboxes
                bbox_w = bboxes[..., 2] - bboxes[..., 0]
                bbox_h = bboxes[..., 3] - bboxes[..., 1]
                valid_inds = (bbox_w > self.filter_thr_px) & (
                    bbox_h > self.filter_thr_px)
                # If the shift does not contain any gt-bbox area, skip this
                # image.
                if key == 'gt_bboxes' and not valid_inds.any():
                    return results
                bboxes = bboxes[valid_inds]
                results[key] = bboxes

                # label fields. e.g. gt_labels and gt_labels_ignore
                label_key = self.bbox2label.get(key)
                if label_key in results:
                    results[label_key] = results[label_key][valid_inds]

            for key in results.get('img_fields', ['img']):
                img = results[key]
                new_img = np.zeros_like(img)
                img_h, img_w = img.shape[:2]
                new_h = img_h - np.abs(random_shift_y)
                new_w = img_w - np.abs(random_shift_x)
                new_img[new_y:new_y + new_h, new_x:new_x + new_w] \
                    = img[ori_y:ori_y + new_h, ori_x:ori_x + new_w]
                results[key] = new_img

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(max_shift_px={self.max_shift_px}, '
        return repr_str


@PIPELINES.register_module()
class Pad:
    """Pad the image & masks & segmentation map.

    There are two padding modes: (1) pad to a fixed size and (2) pad to the
    minimum size that is divisible by some number.
    Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor",

    Args:
        size (tuple, optional): Fixed padding size.
        size_divisor (int, optional): The divisor of padded size.
        pad_to_square (bool): Whether to pad the image into a square.
            Currently only used for YOLOX. Default: False.
        pad_val (dict, optional): A dict for padding value, the default
            value is `dict(img=0, masks=0, seg=255)`.
    """

    def __init__(self,
                 size=None,
                 size_divisor=None,
                 pad_to_square=False,
                 pad_val=dict(img=0, masks=0, seg=255)):
        self.size = size
        self.size_divisor = size_divisor
        if isinstance(pad_val, float) or isinstance(pad_val, int):
            warnings.warn(
                'pad_val of float type is deprecated now, '
                f'please use pad_val=dict(img={pad_val}, '
                f'masks={pad_val}, seg=255) instead.', DeprecationWarning)
            pad_val = dict(img=pad_val, masks=pad_val, seg=255)
        assert isinstance(pad_val, dict)
        self.pad_val = pad_val
        self.pad_to_square = pad_to_square

        if pad_to_square:
            assert size is None and size_divisor is None, \
                'The size and size_divisor must be None ' \
                'when pad2square is True'
        else:
            assert size is not None or size_divisor is not None, \
                'only one of size and size_divisor should be valid'
            assert size is None or size_divisor is None

    def _pad_img(self, results):
        """Pad images according to ``self.size``."""
        pad_val = self.pad_val.get('img', 0)
        for key in results.get('img_fields', ['img']):
            if self.pad_to_square:
                max_size = max(results[key].shape[:2])
                self.size = (max_size, max_size)
            if self.size is not None:
                padded_img = mmcv.impad(
                    results[key], shape=self.size, pad_val=pad_val)
            elif self.size_divisor is not None:
                padded_img = mmcv.impad_to_multiple(
                    results[key], self.size_divisor, pad_val=pad_val)
            results[key] = padded_img
        results['pad_shape'] = padded_img.shape
        results['pad_fixed_size'] = self.size
        results['pad_size_divisor'] = self.size_divisor

    def _pad_masks(self, results):
        """Pad masks according to ``results['pad_shape']``."""
        pad_shape = results['pad_shape'][:2]
        pad_val = self.pad_val.get('masks', 0)
        for key in results.get('mask_fields', []):
            results[key] = results[key].pad(pad_shape, pad_val=pad_val)

    def _pad_seg(self, results):
        """Pad semantic segmentation map according to
        ``results['pad_shape']``."""
        pad_val = self.pad_val.get('seg', 255)
        for key in results.get('seg_fields', []):
            results[key] = mmcv.impad(
                results[key], shape=results['pad_shape'][:2], pad_val=pad_val)

    def __call__(self, results):
        """Call function to pad images, masks, semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Updated result dict.
        """
        self._pad_img(results)
        self._pad_masks(results)
        self._pad_seg(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(size={self.size}, '
        repr_str += f'size_divisor={self.size_divisor}, '
        repr_str += f'pad_to_square={self.pad_to_square}, '
        repr_str += f'pad_val={self.pad_val})'
        return repr_str


@PIPELINES.register_module()
class Normalize:
    """Normalize the image.

    Added key is "img_norm_cfg".

    Args:
        mean (sequence): Mean values of 3 channels.
        std (sequence): Std values of 3 channels.
        to_rgb (bool): Whether to convert the image from BGR to RGB,
            default is true.
    """

    def __init__(self, mean, std, to_rgb=True):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
        self.to_rgb = to_rgb

    def __call__(self, results):
        """Call function to normalize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Normalized results, 'img_norm_cfg' key is added into
                result dict.
        """
        for key in results.get('img_fields', ['img']):
            results[key] = mmcv.imnormalize(results[key], self.mean, self.std,
                                            self.to_rgb)
        results['img_norm_cfg'] = dict(
            mean=self.mean, std=self.std, to_rgb=self.to_rgb)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
        return repr_str


@PIPELINES.register_module()
class RandomCrop:
    """Random crop the image & bboxes & masks.

    The absolute `crop_size` is sampled based on `crop_type` and `image_size`,
    then the cropped results are generated.

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str, optional): one of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])]. Default "absolute".
        allow_negative_crop (bool, optional): Whether to allow a crop that does
            not contain any bbox area. Default False.
        recompute_bbox (bool, optional): Whether to re-compute the boxes based
            on cropped instance masks. Default False.
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.

    Note:
        - If the image is smaller than the absolute crop size, return the
            original image.
        - The keys for bboxes, labels and masks must be aligned. That is,
          `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and
          `gt_bboxes_ignore` corresponds to `gt_labels_ignore` and
          `gt_masks_ignore`.
        - If the crop does not contain any gt-bbox region and
          `allow_negative_crop` is set to False, skip this image.
    """

    def __init__(self,
                 crop_size,
                 crop_type='absolute',
                 allow_negative_crop=False,
                 recompute_bbox=False,
                 bbox_clip_border=True):
        if crop_type not in [
                'relative_range', 'relative', 'absolute', 'absolute_range'
        ]:
            raise ValueError(f'Invalid crop_type {crop_type}.')
        if crop_type in ['absolute', 'absolute_range']:
            assert crop_size[0] > 0 and crop_size[1] > 0
            assert isinstance(crop_size[0], int) and isinstance(
                crop_size[1], int)
        else:
            assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1
        self.crop_size = crop_size
        self.crop_type = crop_type
        self.allow_negative_crop = allow_negative_crop
        self.bbox_clip_border = bbox_clip_border
        self.recompute_bbox = recompute_bbox
        # The key correspondence from bboxes to labels and masks.
        self.bbox2label = {
            'gt_bboxes': 'gt_labels',
            'gt_bboxes_ignore': 'gt_labels_ignore'
        }
        self.bbox2mask = {
            'gt_bboxes': 'gt_masks',
            'gt_bboxes_ignore': 'gt_masks_ignore'
        }

    def _crop_data(self, results, crop_size, allow_negative_crop):
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
                contain any bbox area. Default to False.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            margin_h = max(img.shape[0] - crop_size[0], 0)
            margin_w = max(img.shape[1] - crop_size[1], 0)
            offset_h = np.random.randint(0, margin_h + 1)
            offset_w = np.random.randint(0, margin_w + 1)
            crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
            crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
                if self.recompute_bbox:
                    results[key] = results[mask_key].get_bboxes()

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        return results

    def _get_crop_size(self, image_size):
        """Randomly generates the absolute crop size based on `crop_type` and
        `image_size`.

        Args:
            image_size (tuple): (h, w).

        Returns:
            crop_size (tuple): (crop_h, crop_w) in absolute pixels.
        """
        h, w = image_size
        if self.crop_type == 'absolute':
            return (min(self.crop_size[0], h), min(self.crop_size[1], w))
        elif self.crop_type == 'absolute_range':
            assert self.crop_size[0] <= self.crop_size[1]
            crop_h = np.random.randint(
                min(h, self.crop_size[0]),
                min(h, self.crop_size[1]) + 1)
            crop_w = np.random.randint(
                min(w, self.crop_size[0]),
                min(w, self.crop_size[1]) + 1)
            return crop_h, crop_w
        elif self.crop_type == 'relative':
            crop_h, crop_w = self.crop_size
            return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
        elif self.crop_type == 'relative_range':
            crop_size = np.asarray(self.crop_size, dtype=np.float32)
            crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size)
            return int(h * crop_h + 0.5), int(w * crop_w + 0.5)

    def __call__(self, results):
        """Call function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """
        image_size = results['img'].shape[:2]
        crop_size = self._get_crop_size(image_size)
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class SegRescale:
    """Rescale semantic segmentation maps.

    Args:
        scale_factor (float): The scale factor of the final output.
        backend (str): Image rescale backend, choices are 'cv2' and 'pillow'.
            These two backends generates slightly different results. Defaults
            to 'cv2'.
    """

    def __init__(self, scale_factor=1, backend='cv2'):
        self.scale_factor = scale_factor
        self.backend = backend

    def __call__(self, results):
        """Call function to scale the semantic segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with semantic segmentation map scaled.
        """

        for key in results.get('seg_fields', []):
            if self.scale_factor != 1:
                results[key] = mmcv.imrescale(
                    results[key],
                    self.scale_factor,
                    interpolation='nearest',
                    backend=self.backend)
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(scale_factor={self.scale_factor})'


@PIPELINES.register_module()
class PhotoMetricDistortion:
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta=32,
                 contrast_range=(0.5, 1.5),
                 saturation_range=(0.5, 1.5),
                 hue_delta=18):
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    def __call__(self, results):
        """Call function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']
        img = img.astype(np.float32)
        # random brightness
        if random.randint(2):
            delta = random.uniform(-self.brightness_delta,
                                   self.brightness_delta)
            img += delta

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = random.randint(2)
        if mode == 1:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if random.randint(2):
            img[..., 1] *= random.uniform(self.saturation_lower,
                                          self.saturation_upper)

        # random hue
        if random.randint(2):
            img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if random.randint(2):
                alpha = random.uniform(self.contrast_lower,
                                       self.contrast_upper)
                img *= alpha

        # randomly swap channels
        if random.randint(2):
            img = img[..., random.permutation(3)]

        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(\nbrightness_delta={self.brightness_delta},\n'
        repr_str += 'contrast_range='
        repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n'
        repr_str += 'saturation_range='
        repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n'
        repr_str += f'hue_delta={self.hue_delta})'
        return repr_str


@PIPELINES.register_module()
class Expand:
    """Random expand the image & bboxes.

    Randomly place the original image on a canvas of 'ratio' x original image
    size filled with mean values. The ratio is in the range of ratio_range.

    Args:
        mean (tuple): mean value of dataset.
        to_rgb (bool): if need to convert the order of mean to align with RGB.
        ratio_range (tuple): range of expand ratio.
        prob (float): probability of applying this transformation
    """

    def __init__(self,
                 mean=(0, 0, 0),
                 to_rgb=True,
                 ratio_range=(1, 4),
                 seg_ignore_label=None,
                 prob=0.5):
        self.to_rgb = to_rgb
        self.ratio_range = ratio_range
        if to_rgb:
            self.mean = mean[::-1]
        else:
            self.mean = mean
        self.min_ratio, self.max_ratio = ratio_range
        self.seg_ignore_label = seg_ignore_label
        self.prob = prob

    def __call__(self, results):
        """Call function to expand images, bounding boxes.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images, bounding boxes expanded
        """

        if random.uniform(0, 1) > self.prob:
            return results

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']

        h, w, c = img.shape
        ratio = random.uniform(self.min_ratio, self.max_ratio)
        # speedup expand when meets large image
        if np.all(self.mean == self.mean[0]):
            expand_img = np.empty((int(h * ratio), int(w * ratio), c),
                                  img.dtype)
            expand_img.fill(self.mean[0])
        else:
            expand_img = np.full((int(h * ratio), int(w * ratio), c),
                                 self.mean,
                                 dtype=img.dtype)
        left = int(random.uniform(0, w * ratio - w))
        top = int(random.uniform(0, h * ratio - h))
        expand_img[top:top + h, left:left + w] = img

        results['img'] = expand_img
        # expand bboxes
        for key in results.get('bbox_fields', []):
            results[key] = results[key] + np.tile(
                (left, top), 2).astype(results[key].dtype)

        # expand masks
        for key in results.get('mask_fields', []):
            results[key] = results[key].expand(
                int(h * ratio), int(w * ratio), top, left)

        # expand segs
        for key in results.get('seg_fields', []):
            gt_seg = results[key]
            expand_gt_seg = np.full((int(h * ratio), int(w * ratio)),
                                    self.seg_ignore_label,
                                    dtype=gt_seg.dtype)
            expand_gt_seg[top:top + h, left:left + w] = gt_seg
            results[key] = expand_gt_seg
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(mean={self.mean}, to_rgb={self.to_rgb}, '
        repr_str += f'ratio_range={self.ratio_range}, '
        repr_str += f'seg_ignore_label={self.seg_ignore_label})'
        return repr_str


@PIPELINES.register_module()
class MinIoURandomCrop:
    """Random crop the image & bboxes, the cropped patches have minimum IoU
    requirement with original image & bboxes, the IoU threshold is randomly
    selected from min_ious.

    Args:
        min_ious (tuple): minimum IoU threshold for all intersections with
        bounding boxes
        min_crop_size (float): minimum crop's size (i.e. h,w := a*h, a*w,
        where a >= min_crop_size).
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.

    Note:
        The keys for bboxes, labels and masks should be paired. That is, \
        `gt_bboxes` corresponds to `gt_labels` and `gt_masks`, and \
        `gt_bboxes_ignore` to `gt_labels_ignore` and `gt_masks_ignore`.
    """

    def __init__(self,
                 min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
                 min_crop_size=0.3,
                 bbox_clip_border=True):
        # 1: return ori img
        self.min_ious = min_ious
        self.sample_mode = (1, *min_ious, 0)
        self.min_crop_size = min_crop_size
        self.bbox_clip_border = bbox_clip_border
        self.bbox2label = {
            'gt_bboxes': 'gt_labels',
            'gt_bboxes_ignore': 'gt_labels_ignore'
        }
        self.bbox2mask = {
            'gt_bboxes': 'gt_masks',
            'gt_bboxes_ignore': 'gt_masks_ignore'
        }

    def __call__(self, results):
        """Call function to crop images and bounding boxes with minimum IoU
        constraint.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images and bounding boxes cropped, \
                'img_shape' key is updated.
        """

        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        img = results['img']
        assert 'bbox_fields' in results
        boxes = [results[key] for key in results['bbox_fields']]
        boxes = np.concatenate(boxes, 0)
        h, w, c = img.shape
        while True:
            mode = random.choice(self.sample_mode)
            self.mode = mode
            if mode == 1:
                return results

            min_iou = mode
            for i in range(50):
                new_w = random.uniform(self.min_crop_size * w, w)
                new_h = random.uniform(self.min_crop_size * h, h)

                # h / w in [0.5, 2]
                if new_h / new_w < 0.5 or new_h / new_w > 2:
                    continue

                left = random.uniform(w - new_w)
                top = random.uniform(h - new_h)

                patch = np.array(
                    (int(left), int(top), int(left + new_w), int(top + new_h)))
                # Line or point crop is not allowed
                if patch[2] == patch[0] or patch[3] == patch[1]:
                    continue
                overlaps = bbox_overlaps(
                    patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
                if len(overlaps) > 0 and overlaps.min() < min_iou:
                    continue

                # center of boxes should inside the crop img
                # only adjust boxes and instance masks when the gt is not empty
                if len(overlaps) > 0:
                    # adjust boxes
                    def is_center_of_bboxes_in_patch(boxes, patch):
                        center = (boxes[:, :2] + boxes[:, 2:]) / 2
                        mask = ((center[:, 0] > patch[0]) *
                                (center[:, 1] > patch[1]) *
                                (center[:, 0] < patch[2]) *
                                (center[:, 1] < patch[3]))
                        return mask

                    mask = is_center_of_bboxes_in_patch(boxes, patch)
                    if not mask.any():
                        continue
                    for key in results.get('bbox_fields', []):
                        boxes = results[key].copy()
                        mask = is_center_of_bboxes_in_patch(boxes, patch)
                        boxes = boxes[mask]
                        if self.bbox_clip_border:
                            boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
                            boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
                        boxes -= np.tile(patch[:2], 2)

                        results[key] = boxes
                        # labels
                        label_key = self.bbox2label.get(key)
                        if label_key in results:
                            results[label_key] = results[label_key][mask]

                        # mask fields
                        mask_key = self.bbox2mask.get(key)
                        if mask_key in results:
                            results[mask_key] = results[mask_key][
                                mask.nonzero()[0]].crop(patch)
                # adjust the img no matter whether the gt is empty before crop
                img = img[patch[1]:patch[3], patch[0]:patch[2]]
                results['img'] = img
                results['img_shape'] = img.shape

                # seg fields
                for key in results.get('seg_fields', []):
                    results[key] = results[key][patch[1]:patch[3],
                                                patch[0]:patch[2]]
                return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(min_ious={self.min_ious}, '
        repr_str += f'min_crop_size={self.min_crop_size}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class Corrupt:
    """Corruption augmentation.

    Corruption transforms implemented based on
    `imagecorruptions <https://github.com/bethgelab/imagecorruptions>`_.

    Args:
        corruption (str): Corruption name.
        severity (int, optional): The severity of corruption. Default: 1.
    """

    def __init__(self, corruption, severity=1):
        self.corruption = corruption
        self.severity = severity

    def __call__(self, results):
        """Call function to corrupt image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images corrupted.
        """

        if corrupt is None:
            raise RuntimeError('imagecorruptions is not installed')
        if 'img_fields' in results:
            assert results['img_fields'] == ['img'], \
                'Only single img_fields is allowed'
        results['img'] = corrupt(
            results['img'].astype(np.uint8),
            corruption_name=self.corruption,
            severity=self.severity)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(corruption={self.corruption}, '
        repr_str += f'severity={self.severity})'
        return repr_str


@PIPELINES.register_module()
class Albu:
    """Albumentation augmentation.

    Adds custom transformations from Albumentations library.
    Please, visit `https://albumentations.readthedocs.io`
    to get more information.

    An example of ``transforms`` is as followed:

    .. code-block::

        [
            dict(
                type='ShiftScaleRotate',
                shift_limit=0.0625,
                scale_limit=0.0,
                rotate_limit=0,
                interpolation=1,
                p=0.5),
            dict(
                type='RandomBrightnessContrast',
                brightness_limit=[0.1, 0.3],
                contrast_limit=[0.1, 0.3],
                p=0.2),
            dict(type='ChannelShuffle', p=0.1),
            dict(
                type='OneOf',
                transforms=[
                    dict(type='Blur', blur_limit=3, p=1.0),
                    dict(type='MedianBlur', blur_limit=3, p=1.0)
                ],
                p=0.1),
        ]

    Args:
        transforms (list[dict]): A list of albu transformations
        bbox_params (dict): Bbox_params for albumentation `Compose`
        keymap (dict): Contains {'input key':'albumentation-style key'}
        skip_img_without_anno (bool): Whether to skip the image if no ann left
            after aug
    """

    def __init__(self,
                 transforms,
                 bbox_params=None,
                 keymap=None,
                 update_pad_shape=False,
                 skip_img_without_anno=False):
        if Compose is None:
            raise RuntimeError('albumentations is not installed')

        # Args will be modified later, copying it will be safer
        transforms = copy.deepcopy(transforms)
        if bbox_params is not None:
            bbox_params = copy.deepcopy(bbox_params)
        if keymap is not None:
            keymap = copy.deepcopy(keymap)
        self.transforms = transforms
        self.filter_lost_elements = False
        self.update_pad_shape = update_pad_shape
        self.skip_img_without_anno = skip_img_without_anno

        # A simple workaround to remove masks without boxes
        if (isinstance(bbox_params, dict) and 'label_fields' in bbox_params
                and 'filter_lost_elements' in bbox_params):
            self.filter_lost_elements = True
            self.origin_label_fields = bbox_params['label_fields']
            bbox_params['label_fields'] = ['idx_mapper']
            del bbox_params['filter_lost_elements']

        self.bbox_params = (
            self.albu_builder(bbox_params) if bbox_params else None)
        self.aug = Compose([self.albu_builder(t) for t in self.transforms],
                           bbox_params=self.bbox_params)

        if not keymap:
            self.keymap_to_albu = {
                'img': 'image',
                'gt_masks': 'masks',
                'gt_bboxes': 'bboxes'
            }
        else:
            self.keymap_to_albu = keymap
        self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}

    def albu_builder(self, cfg):
        """Import a module from albumentations.

        It inherits some of :func:`build_from_cfg` logic.

        Args:
            cfg (dict): Config dict. It should at least contain the key "type".

        Returns:
            obj: The constructed object.
        """

        assert isinstance(cfg, dict) and 'type' in cfg
        args = cfg.copy()

        obj_type = args.pop('type')
        if mmcv.is_str(obj_type):
            if albumentations is None:
                raise RuntimeError('albumentations is not installed')
            obj_cls = getattr(albumentations, obj_type)
        elif inspect.isclass(obj_type):
            obj_cls = obj_type
        else:
            raise TypeError(
                f'type must be a str or valid type, but got {type(obj_type)}')

        if 'transforms' in args:
            args['transforms'] = [
                self.albu_builder(transform)
                for transform in args['transforms']
            ]

        return obj_cls(**args)

    @staticmethod
    def mapper(d, keymap):
        """Dictionary mapper. Renames keys according to keymap provided.

        Args:
            d (dict): old dict
            keymap (dict): {'old_key':'new_key'}
        Returns:
            dict: new dict.
        """

        updated_dict = {}
        for k, v in zip(d.keys(), d.values()):
            new_k = keymap.get(k, k)
            updated_dict[new_k] = d[k]
        return updated_dict

    def __call__(self, results):
        # dict to albumentations format
        results = self.mapper(results, self.keymap_to_albu)
        # TODO: add bbox_fields
        if 'bboxes' in results:
            # to list of boxes
            if isinstance(results['bboxes'], np.ndarray):
                results['bboxes'] = [x for x in results['bboxes']]
            # add pseudo-field for filtration
            if self.filter_lost_elements:
                results['idx_mapper'] = np.arange(len(results['bboxes']))

        # TODO: Support mask structure in albu
        if 'masks' in results:
            if isinstance(results['masks'], PolygonMasks):
                raise NotImplementedError(
                    'Albu only supports BitMap masks now')
            ori_masks = results['masks']
            if albumentations.__version__ < '0.5':
                results['masks'] = results['masks'].masks
            else:
                results['masks'] = [mask for mask in results['masks'].masks]

        results = self.aug(**results)

        if 'bboxes' in results:
            if isinstance(results['bboxes'], list):
                results['bboxes'] = np.array(
                    results['bboxes'], dtype=np.float32)
            results['bboxes'] = results['bboxes'].reshape(-1, 4)

            # filter label_fields
            if self.filter_lost_elements:

                for label in self.origin_label_fields:
                    results[label] = np.array(
                        [results[label][i] for i in results['idx_mapper']])
                if 'masks' in results:
                    results['masks'] = np.array(
                        [results['masks'][i] for i in results['idx_mapper']])
                    results['masks'] = ori_masks.__class__(
                        results['masks'], results['image'].shape[0],
                        results['image'].shape[1])

                if (not len(results['idx_mapper'])
                        and self.skip_img_without_anno):
                    return None

        if 'gt_labels' in results:
            if isinstance(results['gt_labels'], list):
                results['gt_labels'] = np.array(results['gt_labels'])
            results['gt_labels'] = results['gt_labels'].astype(np.int64)

        # back to the original format
        results = self.mapper(results, self.keymap_back)

        # update final shape
        if self.update_pad_shape:
            results['pad_shape'] = results['img'].shape

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
        return repr_str


@PIPELINES.register_module()
class RandomCenterCropPad:
    """Random center crop and random around padding for CornerNet.

    This operation generates randomly cropped image from the original image and
    pads it simultaneously. Different from :class:`RandomCrop`, the output
    shape may not equal to ``crop_size`` strictly. We choose a random value
    from ``ratios`` and the output shape could be larger or smaller than
    ``crop_size``. The padding operation is also different from :class:`Pad`,
    here we use around padding instead of right-bottom padding.

    The relation between output image (padding image) and original image:

    .. code:: text

                        output image

               +----------------------------+
               |          padded area       |
        +------|----------------------------|----------+
        |      |         cropped area       |          |
        |      |         +---------------+  |          |
        |      |         |    .   center |  |          | original image
        |      |         |        range  |  |          |
        |      |         +---------------+  |          |
        +------|----------------------------|----------+
               |          padded area       |
               +----------------------------+

    There are 5 main areas in the figure:

    - output image: output image of this operation, also called padding
      image in following instruction.
    - original image: input image of this operation.
    - padded area: non-intersect area of output image and original image.
    - cropped area: the overlap of output image and original image.
    - center range: a smaller area where random center chosen from.
      center range is computed by ``border`` and original image's shape
      to avoid our random center is too close to original image's border.

    Also this operation act differently in train and test mode, the summary
    pipeline is listed below.

    Train pipeline:

    1. Choose a ``random_ratio`` from ``ratios``, the shape of padding image
       will be ``random_ratio * crop_size``.
    2. Choose a ``random_center`` in center range.
    3. Generate padding image with center matches the ``random_center``.
    4. Initialize the padding image with pixel value equals to ``mean``.
    5. Copy the cropped area to padding image.
    6. Refine annotations.

    Test pipeline:

    1. Compute output shape according to ``test_pad_mode``.
    2. Generate padding image with center matches the original image
       center.
    3. Initialize the padding image with pixel value equals to ``mean``.
    4. Copy the ``cropped area`` to padding image.

    Args:
        crop_size (tuple | None): expected size after crop, final size will
            computed according to ratio. Requires (h, w) in train mode, and
            None in test mode.
        ratios (tuple): random select a ratio from tuple and crop image to
            (crop_size[0] * ratio) * (crop_size[1] * ratio).
            Only available in train mode.
        border (int): max distance from center select area to image border.
            Only available in train mode.
        mean (sequence): Mean values of 3 channels.
        std (sequence): Std values of 3 channels.
        to_rgb (bool): Whether to convert the image from BGR to RGB.
        test_mode (bool): whether involve random variables in transform.
            In train mode, crop_size is fixed, center coords and ratio is
            random selected from predefined lists. In test mode, crop_size
            is image's original shape, center coords and ratio is fixed.
        test_pad_mode (tuple): padding method and padding shape value, only
            available in test mode. Default is using 'logical_or' with
            127 as padding shape value.

            - 'logical_or': final_shape = input_shape | padding_shape_value
            - 'size_divisor': final_shape = int(
              ceil(input_shape / padding_shape_value) * padding_shape_value)
        test_pad_add_pix (int): Extra padding pixel in test mode. Default 0.
        bbox_clip_border (bool, optional): Whether clip the objects outside
            the border of the image. Defaults to True.
    """

    def __init__(self,
                 crop_size=None,
                 ratios=(0.9, 1.0, 1.1),
                 border=128,
                 mean=None,
                 std=None,
                 to_rgb=None,
                 test_mode=False,
                 test_pad_mode=('logical_or', 127),
                 test_pad_add_pix=0,
                 bbox_clip_border=True):
        if test_mode:
            assert crop_size is None, 'crop_size must be None in test mode'
            assert ratios is None, 'ratios must be None in test mode'
            assert border is None, 'border must be None in test mode'
            assert isinstance(test_pad_mode, (list, tuple))
            assert test_pad_mode[0] in ['logical_or', 'size_divisor']
        else:
            assert isinstance(crop_size, (list, tuple))
            assert crop_size[0] > 0 and crop_size[1] > 0, (
                'crop_size must > 0 in train mode')
            assert isinstance(ratios, (list, tuple))
            assert test_pad_mode is None, (
                'test_pad_mode must be None in train mode')

        self.crop_size = crop_size
        self.ratios = ratios
        self.border = border
        # We do not set default value to mean, std and to_rgb because these
        # hyper-parameters are easy to forget but could affect the performance.
        # Please use the same setting as Normalize for performance assurance.
        assert mean is not None and std is not None and to_rgb is not None
        self.to_rgb = to_rgb
        self.input_mean = mean
        self.input_std = std
        if to_rgb:
            self.mean = mean[::-1]
            self.std = std[::-1]
        else:
            self.mean = mean
            self.std = std
        self.test_mode = test_mode
        self.test_pad_mode = test_pad_mode
        self.test_pad_add_pix = test_pad_add_pix
        self.bbox_clip_border = bbox_clip_border

    def _get_border(self, border, size):
        """Get final border for the target size.

        This function generates a ``final_border`` according to image's shape.
        The area between ``final_border`` and ``size - final_border`` is the
        ``center range``. We randomly choose center from the ``center range``
        to avoid our random center is too close to original image's border.
        Also ``center range`` should be larger than 0.

        Args:
            border (int): The initial border, default is 128.
            size (int): The width or height of original image.
        Returns:
            int: The final border.
        """
        k = 2 * border / size
        i = pow(2, np.ceil(np.log2(np.ceil(k))) + (k == int(k)))
        return border // i

    def _filter_boxes(self, patch, boxes):
        """Check whether the center of each box is in the patch.

        Args:
            patch (list[int]): The cropped area, [left, top, right, bottom].
            boxes (numpy array, (N x 4)): Ground truth boxes.

        Returns:
            mask (numpy array, (N,)): Each box is inside or outside the patch.
        """
        center = (boxes[:, :2] + boxes[:, 2:]) / 2
        mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (
            center[:, 0] < patch[2]) * (
                center[:, 1] < patch[3])
        return mask

    def _crop_image_and_paste(self, image, center, size):
        """Crop image with a given center and size, then paste the cropped
        image to a blank image with two centers align.

        This function is equivalent to generating a blank image with ``size``
        as its shape. Then cover it on the original image with two centers (
        the center of blank image and the random center of original image)
        aligned. The overlap area is paste from the original image and the
        outside area is filled with ``mean pixel``.

        Args:
            image (np array, H x W x C): Original image.
            center (list[int]): Target crop center coord.
            size (list[int]): Target crop size. [target_h, target_w]

        Returns:
            cropped_img (np array, target_h x target_w x C): Cropped image.
            border (np array, 4): The distance of four border of
                ``cropped_img`` to the original image area, [top, bottom,
                left, right]
            patch (list[int]): The cropped area, [left, top, right, bottom].
        """
        center_y, center_x = center
        target_h, target_w = size
        img_h, img_w, img_c = image.shape

        x0 = max(0, center_x - target_w // 2)
        x1 = min(center_x + target_w // 2, img_w)
        y0 = max(0, center_y - target_h // 2)
        y1 = min(center_y + target_h // 2, img_h)
        patch = np.array((int(x0), int(y0), int(x1), int(y1)))

        left, right = center_x - x0, x1 - center_x
        top, bottom = center_y - y0, y1 - center_y

        cropped_center_y, cropped_center_x = target_h // 2, target_w // 2
        cropped_img = np.zeros((target_h, target_w, img_c), dtype=image.dtype)
        for i in range(img_c):
            cropped_img[:, :, i] += self.mean[i]
        y_slice = slice(cropped_center_y - top, cropped_center_y + bottom)
        x_slice = slice(cropped_center_x - left, cropped_center_x + right)
        cropped_img[y_slice, x_slice, :] = image[y0:y1, x0:x1, :]

        border = np.array([
            cropped_center_y - top, cropped_center_y + bottom,
            cropped_center_x - left, cropped_center_x + right
        ],
                          dtype=np.float32)

        return cropped_img, border, patch

    def _train_aug(self, results):
        """Random crop and around padding the original image.

        Args:
            results (dict): Image infomations in the augment pipeline.

        Returns:
            results (dict): The updated dict.
        """
        img = results['img']
        h, w, c = img.shape
        boxes = results['gt_bboxes']
        while True:
            scale = random.choice(self.ratios)
            new_h = int(self.crop_size[0] * scale)
            new_w = int(self.crop_size[1] * scale)
            h_border = self._get_border(self.border, h)
            w_border = self._get_border(self.border, w)

            for i in range(50):
                center_x = random.randint(low=w_border, high=w - w_border)
                center_y = random.randint(low=h_border, high=h - h_border)

                cropped_img, border, patch = self._crop_image_and_paste(
                    img, [center_y, center_x], [new_h, new_w])

                mask = self._filter_boxes(patch, boxes)
                # if image do not have valid bbox, any crop patch is valid.
                if not mask.any() and len(boxes) > 0:
                    continue

                results['img'] = cropped_img
                results['img_shape'] = cropped_img.shape
                results['pad_shape'] = cropped_img.shape

                x0, y0, x1, y1 = patch

                left_w, top_h = center_x - x0, center_y - y0
                cropped_center_x, cropped_center_y = new_w // 2, new_h // 2

                # crop bboxes accordingly and clip to the image boundary
                for key in results.get('bbox_fields', []):
                    mask = self._filter_boxes(patch, results[key])
                    bboxes = results[key][mask]
                    bboxes[:, 0:4:2] += cropped_center_x - left_w - x0
                    bboxes[:, 1:4:2] += cropped_center_y - top_h - y0
                    if self.bbox_clip_border:
                        bboxes[:, 0:4:2] = np.clip(bboxes[:, 0:4:2], 0, new_w)
                        bboxes[:, 1:4:2] = np.clip(bboxes[:, 1:4:2], 0, new_h)
                    keep = (bboxes[:, 2] > bboxes[:, 0]) & (
                        bboxes[:, 3] > bboxes[:, 1])
                    bboxes = bboxes[keep]
                    results[key] = bboxes
                    if key in ['gt_bboxes']:
                        if 'gt_labels' in results:
                            labels = results['gt_labels'][mask]
                            labels = labels[keep]
                            results['gt_labels'] = labels
                        if 'gt_masks' in results:
                            raise NotImplementedError(
                                'RandomCenterCropPad only supports bbox.')

                # crop semantic seg
                for key in results.get('seg_fields', []):
                    raise NotImplementedError(
                        'RandomCenterCropPad only supports bbox.')
                return results

    def _test_aug(self, results):
        """Around padding the original image without cropping.

        The padding mode and value are from ``test_pad_mode``.

        Args:
            results (dict): Image infomations in the augment pipeline.

        Returns:
            results (dict): The updated dict.
        """
        img = results['img']
        h, w, c = img.shape
        results['img_shape'] = img.shape
        if self.test_pad_mode[0] in ['logical_or']:
            # self.test_pad_add_pix is only used for centernet
            target_h = (h | self.test_pad_mode[1]) + self.test_pad_add_pix
            target_w = (w | self.test_pad_mode[1]) + self.test_pad_add_pix
        elif self.test_pad_mode[0] in ['size_divisor']:
            divisor = self.test_pad_mode[1]
            target_h = int(np.ceil(h / divisor)) * divisor
            target_w = int(np.ceil(w / divisor)) * divisor
        else:
            raise NotImplementedError(
                'RandomCenterCropPad only support two testing pad mode:'
                'logical-or and size_divisor.')

        cropped_img, border, _ = self._crop_image_and_paste(
            img, [h // 2, w // 2], [target_h, target_w])
        results['img'] = cropped_img
        results['pad_shape'] = cropped_img.shape
        results['border'] = border
        return results

    def __call__(self, results):
        img = results['img']
        assert img.dtype == np.float32, (
            'RandomCenterCropPad needs the input image of dtype np.float32,'
            ' please set "to_float32=True" in "LoadImageFromFile" pipeline')
        h, w, c = img.shape
        assert c == len(self.mean)
        if self.test_mode:
            return self._test_aug(results)
        else:
            return self._train_aug(results)

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'ratios={self.ratios}, '
        repr_str += f'border={self.border}, '
        repr_str += f'mean={self.input_mean}, '
        repr_str += f'std={self.input_std}, '
        repr_str += f'to_rgb={self.to_rgb}, '
        repr_str += f'test_mode={self.test_mode}, '
        repr_str += f'test_pad_mode={self.test_pad_mode}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border})'
        return repr_str


@PIPELINES.register_module()
class CutOut:
    """CutOut operation.

    Randomly drop some regions of image used in
    `Cutout <https://arxiv.org/abs/1708.04552>`_.

    Args:
        n_holes (int | tuple[int, int]): Number of regions to be dropped.
            If it is given as a list, number of holes will be randomly
            selected from the closed interval [`n_holes[0]`, `n_holes[1]`].
        cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate
            shape of dropped regions. It can be `tuple[int, int]` to use a
            fixed cutout shape, or `list[tuple[int, int]]` to randomly choose
            shape from the list.
        cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The
            candidate ratio of dropped regions. It can be `tuple[float, float]`
            to use a fixed ratio or `list[tuple[float, float]]` to randomly
            choose ratio from the list. Please note that `cutout_shape`
            and `cutout_ratio` cannot be both given at the same time.
        fill_in (tuple[float, float, float] | tuple[int, int, int]): The value
            of pixel to fill in the dropped regions. Default: (0, 0, 0).
    """

    def __init__(self,
                 n_holes,
                 cutout_shape=None,
                 cutout_ratio=None,
                 fill_in=(0, 0, 0)):

        assert (cutout_shape is None) ^ (cutout_ratio is None), \
            'Either cutout_shape or cutout_ratio should be specified.'
        assert (isinstance(cutout_shape, (list, tuple))
                or isinstance(cutout_ratio, (list, tuple)))
        if isinstance(n_holes, tuple):
            assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
        else:
            n_holes = (n_holes, n_holes)
        self.n_holes = n_holes
        self.fill_in = fill_in
        self.with_ratio = cutout_ratio is not None
        self.candidates = cutout_ratio if self.with_ratio else cutout_shape
        if not isinstance(self.candidates, list):
            self.candidates = [self.candidates]

    def __call__(self, results):
        """Call function to drop some regions of image."""
        h, w, c = results['img'].shape
        n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
        for _ in range(n_holes):
            x1 = np.random.randint(0, w)
            y1 = np.random.randint(0, h)
            index = np.random.randint(0, len(self.candidates))
            if not self.with_ratio:
                cutout_w, cutout_h = self.candidates[index]
            else:
                cutout_w = int(self.candidates[index][0] * w)
                cutout_h = int(self.candidates[index][1] * h)

            x2 = np.clip(x1 + cutout_w, 0, w)
            y2 = np.clip(y1 + cutout_h, 0, h)
            results['img'][y1:y2, x1:x2, :] = self.fill_in

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(n_holes={self.n_holes}, '
        repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
                     else f'cutout_shape={self.candidates}, ')
        repr_str += f'fill_in={self.fill_in})'
        return repr_str


@PIPELINES.register_module()
class Mosaic:
    """Mosaic augmentation.

    Given 4 images, mosaic transform combines them into
    one output image. The output image is composed of the parts from each sub-
    image.

    .. code:: text

                        mosaic transform
                           center_x
                +------------------------------+
                |       pad        |  pad      |
                |      +-----------+           |
                |      |           |           |
                |      |  image1   |--------+  |
                |      |           |        |  |
                |      |           | image2 |  |
     center_y   |----+-------------+-----------|
                |    |   cropped   |           |
                |pad |   image3    |  image4   |
                |    |             |           |
                +----|-------------+-----------+
                     |             |
                     +-------------+

     The mosaic transform steps are as follows:

         1. Choose the mosaic center as the intersections of 4 images
         2. Get the left top image according to the index, and randomly
            sample another 3 images from the custom dataset.
         3. Sub image will be cropped if image is larger than mosaic patch

    Args:
        img_scale (Sequence[int]): Image size after mosaic pipeline of single
            image. The shape order should be (height, width).
            Default to (640, 640).
        center_ratio_range (Sequence[float]): Center ratio range of mosaic
            output. Default to (0.5, 1.5).
        min_bbox_size (int | float): The minimum pixel for filtering
            invalid bboxes after the mosaic pipeline. Default to 0.
        bbox_clip_border (bool, optional): Whether to clip the objects outside
            the border of the image. In some dataset like MOT17, the gt bboxes
            are allowed to cross the border of images. Therefore, we don't
            need to clip the gt bboxes in these cases. Defaults to True.
        skip_filter (bool): Whether to skip filtering rules. If it
            is True, the filter rule will not be applied, and the
            `min_bbox_size` is invalid. Default to True.
        pad_val (int): Pad value. Default to 114.
        prob (float): Probability of applying this transformation.
            Default to 1.0.
    """

    def __init__(self,
                 img_scale=(640, 640),
                 center_ratio_range=(0.5, 1.5),
                 min_bbox_size=0,
                 bbox_clip_border=True,
                 skip_filter=True,
                 pad_val=114,
                 prob=1.0):
        assert isinstance(img_scale, tuple)
        assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. '\
            f'got {prob}.'

        log_img_scale(img_scale, skip_square=True)
        self.img_scale = img_scale
        self.center_ratio_range = center_ratio_range
        self.min_bbox_size = min_bbox_size
        self.bbox_clip_border = bbox_clip_border
        self.skip_filter = skip_filter
        self.pad_val = pad_val
        self.prob = prob

    def __call__(self, results):
        """Call function to make a mosaic of image.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with mosaic transformed.
        """

        if random.uniform(0, 1) > self.prob:
            return results

        results = self._mosaic_transform(results)
        return results

    def get_indexes(self, dataset):
        """Call function to collect indexes.

        Args:
            dataset (:obj:`MultiImageMixDataset`): The dataset.

        Returns:
            list: indexes.
        """

        indexes = [random.randint(0, len(dataset)) for _ in range(3)]
        return indexes

    def _mosaic_transform(self, results):
        """Mosaic transform function.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Updated result dict.
        """

        assert 'mix_results' in results
        mosaic_labels = []
        mosaic_bboxes = []
        if len(results['img'].shape) == 3:
            mosaic_img = np.full(
                (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3),
                self.pad_val,
                dtype=results['img'].dtype)
        else:
            mosaic_img = np.full(
                (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)),
                self.pad_val,
                dtype=results['img'].dtype)

        # mosaic center x, y
        center_x = int(
            random.uniform(*self.center_ratio_range) * self.img_scale[1])
        center_y = int(
            random.uniform(*self.center_ratio_range) * self.img_scale[0])
        center_position = (center_x, center_y)

        loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
        for i, loc in enumerate(loc_strs):
            if loc == 'top_left':
                results_patch = copy.deepcopy(results)
            else:
                results_patch = copy.deepcopy(results['mix_results'][i - 1])

            img_i = results_patch['img']
            h_i, w_i = img_i.shape[:2]
            # keep_ratio resize
            scale_ratio_i = min(self.img_scale[0] / h_i,
                                self.img_scale[1] / w_i)
            img_i = mmcv.imresize(
                img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))

            # compute the combine parameters
            paste_coord, crop_coord = self._mosaic_combine(
                loc, center_position, img_i.shape[:2][::-1])
            x1_p, y1_p, x2_p, y2_p = paste_coord
            x1_c, y1_c, x2_c, y2_c = crop_coord

            # crop and paste image
            mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]

            # adjust coordinate
            gt_bboxes_i = results_patch['gt_bboxes']
            gt_labels_i = results_patch['gt_labels']

            if gt_bboxes_i.shape[0] > 0:
                padw = x1_p - x1_c
                padh = y1_p - y1_c
                gt_bboxes_i[:, 0::2] = \
                    scale_ratio_i * gt_bboxes_i[:, 0::2] + padw
                gt_bboxes_i[:, 1::2] = \
                    scale_ratio_i * gt_bboxes_i[:, 1::2] + padh

            mosaic_bboxes.append(gt_bboxes_i)
            mosaic_labels.append(gt_labels_i)

        if len(mosaic_labels) > 0:
            mosaic_bboxes = np.concatenate(mosaic_bboxes, 0)
            mosaic_labels = np.concatenate(mosaic_labels, 0)

            if self.bbox_clip_border:
                mosaic_bboxes[:, 0::2] = np.clip(mosaic_bboxes[:, 0::2], 0,
                                                 2 * self.img_scale[1])
                mosaic_bboxes[:, 1::2] = np.clip(mosaic_bboxes[:, 1::2], 0,
                                                 2 * self.img_scale[0])

            if not self.skip_filter:
                mosaic_bboxes, mosaic_labels = \
                    self._filter_box_candidates(mosaic_bboxes, mosaic_labels)

        # remove outside bboxes
        inside_inds = find_inside_bboxes(mosaic_bboxes, 2 * self.img_scale[0],
                                         2 * self.img_scale[1])
        mosaic_bboxes = mosaic_bboxes[inside_inds]
        mosaic_labels = mosaic_labels[inside_inds]

        results['img'] = mosaic_img
        results['img_shape'] = mosaic_img.shape
        results['gt_bboxes'] = mosaic_bboxes
        results['gt_labels'] = mosaic_labels

        return results

    def _mosaic_combine(self, loc, center_position_xy, img_shape_wh):
        """Calculate global coordinate of mosaic image and local coordinate of
        cropped sub-image.

        Args:
            loc (str): Index for the sub-image, loc in ('top_left',
              'top_right', 'bottom_left', 'bottom_right').
            center_position_xy (Sequence[float]): Mixing center for 4 images,
                (x, y).
            img_shape_wh (Sequence[int]): Width and height of sub-image

        Returns:
            tuple[tuple[float]]: Corresponding coordinate of pasting and
                cropping
                - paste_coord (tuple): paste corner coordinate in mosaic image.
                - crop_coord (tuple): crop corner coordinate in mosaic image.
        """
        assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
        if loc == 'top_left':
            # index0 to top left part of image
            x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
                             max(center_position_xy[1] - img_shape_wh[1], 0), \
                             center_position_xy[0], \
                             center_position_xy[1]
            crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - (
                y2 - y1), img_shape_wh[0], img_shape_wh[1]

        elif loc == 'top_right':
            # index1 to top right part of image
            x1, y1, x2, y2 = center_position_xy[0], \
                             max(center_position_xy[1] - img_shape_wh[1], 0), \
                             min(center_position_xy[0] + img_shape_wh[0],
                                 self.img_scale[1] * 2), \
                             center_position_xy[1]
            crop_coord = 0, img_shape_wh[1] - (y2 - y1), min(
                img_shape_wh[0], x2 - x1), img_shape_wh[1]

        elif loc == 'bottom_left':
            # index2 to bottom left part of image
            x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
                             center_position_xy[1], \
                             center_position_xy[0], \
                             min(self.img_scale[0] * 2, center_position_xy[1] +
                                 img_shape_wh[1])
            crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min(
                y2 - y1, img_shape_wh[1])

        else:
            # index3 to bottom right part of image
            x1, y1, x2, y2 = center_position_xy[0], \
                             center_position_xy[1], \
                             min(center_position_xy[0] + img_shape_wh[0],
                                 self.img_scale[1] * 2), \
                             min(self.img_scale[0] * 2, center_position_xy[1] +
                                 img_shape_wh[1])
            crop_coord = 0, 0, min(img_shape_wh[0],
                                   x2 - x1), min(y2 - y1, img_shape_wh[1])

        paste_coord = x1, y1, x2, y2
        return paste_coord, crop_coord

    def _filter_box_candidates(self, bboxes, labels):
        """Filter out bboxes too small after Mosaic."""
        bbox_w = bboxes[:, 2] - bboxes[:, 0]
        bbox_h = bboxes[:, 3] - bboxes[:, 1]
        valid_inds = (bbox_w > self.min_bbox_size) & \
                     (bbox_h > self.min_bbox_size)
        valid_inds = np.nonzero(valid_inds)[0]
        return bboxes[valid_inds], labels[valid_inds]

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'img_scale={self.img_scale}, '
        repr_str += f'center_ratio_range={self.center_ratio_range}, '
        repr_str += f'pad_val={self.pad_val}, '
        repr_str += f'min_bbox_size={self.min_bbox_size}, '
        repr_str += f'skip_filter={self.skip_filter})'
        return repr_str


@PIPELINES.register_module()
class MixUp:
    """MixUp data augmentation.

    .. code:: text

                         mixup transform
                +------------------------------+
                | mixup image   |              |
                |      +--------|--------+     |
                |      |        |        |     |
                |---------------+        |     |
                |      |                 |     |
                |      |      image      |     |
                |      |                 |     |
                |      |                 |     |
                |      |-----------------+     |
                |             pad              |
                +------------------------------+

     The mixup transform steps are as follows:

        1. Another random image is picked by dataset and embedded in
           the top left patch(after padding and resizing)
        2. The target of mixup transform is the weighted average of mixup
           image and origin image.

    Args:
        img_scale (Sequence[int]): Image output size after mixup pipeline.
            The shape order should be (height, width). Default: (640, 640).
        ratio_range (Sequence[float]): Scale ratio of mixup image.
            Default: (0.5, 1.5).
        flip_ratio (float): Horizontal flip ratio of mixup image.
            Default: 0.5.
        pad_val (int): Pad value. Default: 114.
        max_iters (int): The maximum number of iterations. If the number of
            iterations is greater than `max_iters`, but gt_bbox is still
            empty, then the iteration is terminated. Default: 15.
        min_bbox_size (float): Width and height threshold to filter bboxes.
            If the height or width of a box is smaller than this value, it
            will be removed. Default: 5.
        min_area_ratio (float): Threshold of area ratio between
            original bboxes and wrapped bboxes. If smaller than this value,
            the box will be removed. Default: 0.2.
        max_aspect_ratio (float): Aspect ratio of width and height
            threshold to filter bboxes. If max(h/w, w/h) larger than this
            value, the box will be removed. Default: 20.
        bbox_clip_border (bool, optional): Whether to clip the objects outside
            the border of the image. In some dataset like MOT17, the gt bboxes
            are allowed to cross the border of images. Therefore, we don't
            need to clip the gt bboxes in these cases. Defaults to True.
        skip_filter (bool): Whether to skip filtering rules. If it
            is True, the filter rule will not be applied, and the
            `min_bbox_size` and `min_area_ratio` and `max_aspect_ratio`
            is invalid. Default to True.
    """

    def __init__(self,
                 img_scale=(640, 640),
                 ratio_range=(0.5, 1.5),
                 flip_ratio=0.5,
                 pad_val=114,
                 max_iters=15,
                 min_bbox_size=5,
                 min_area_ratio=0.2,
                 max_aspect_ratio=20,
                 bbox_clip_border=True,
                 skip_filter=True):
        assert isinstance(img_scale, tuple)
        log_img_scale(img_scale, skip_square=True)
        self.dynamic_scale = img_scale
        self.ratio_range = ratio_range
        self.flip_ratio = flip_ratio
        self.pad_val = pad_val
        self.max_iters = max_iters
        self.min_bbox_size = min_bbox_size
        self.min_area_ratio = min_area_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.bbox_clip_border = bbox_clip_border
        self.skip_filter = skip_filter

    def __call__(self, results):
        """Call function to make a mixup of image.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with mixup transformed.
        """

        results = self._mixup_transform(results)
        return results

    def get_indexes(self, dataset):
        """Call function to collect indexes.

        Args:
            dataset (:obj:`MultiImageMixDataset`): The dataset.

        Returns:
            list: indexes.
        """

        for i in range(self.max_iters):
            index = random.randint(0, len(dataset))
            gt_bboxes_i = dataset.get_ann_info(index)['bboxes']
            if len(gt_bboxes_i) != 0:
                break

        return index

    def _mixup_transform(self, results):
        """MixUp transform function.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Updated result dict.
        """

        assert 'mix_results' in results
        assert len(
            results['mix_results']) == 1, 'MixUp only support 2 images now !'

        if results['mix_results'][0]['gt_bboxes'].shape[0] == 0:
            # empty bbox
            return results

        retrieve_results = results['mix_results'][0]
        retrieve_img = retrieve_results['img']

        jit_factor = random.uniform(*self.ratio_range)
        is_filp = random.uniform(0, 1) < self.flip_ratio

        if len(retrieve_img.shape) == 3:
            out_img = np.ones(
                (self.dynamic_scale[0], self.dynamic_scale[1], 3),
                dtype=retrieve_img.dtype) * self.pad_val
        else:
            out_img = np.ones(
                self.dynamic_scale, dtype=retrieve_img.dtype) * self.pad_val

        # 1. keep_ratio resize
        scale_ratio = min(self.dynamic_scale[0] / retrieve_img.shape[0],
                          self.dynamic_scale[1] / retrieve_img.shape[1])
        retrieve_img = mmcv.imresize(
            retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
                           int(retrieve_img.shape[0] * scale_ratio)))

        # 2. paste
        out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img

        # 3. scale jit
        scale_ratio *= jit_factor
        out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
                                          int(out_img.shape[0] * jit_factor)))

        # 4. flip
        if is_filp:
            out_img = out_img[:, ::-1, :]

        # 5. random crop
        ori_img = results['img']
        origin_h, origin_w = out_img.shape[:2]
        target_h, target_w = ori_img.shape[:2]
        padded_img = np.zeros(
            (max(origin_h, target_h), max(origin_w,
                                          target_w), 3)).astype(np.uint8)
        padded_img[:origin_h, :origin_w] = out_img

        x_offset, y_offset = 0, 0
        if padded_img.shape[0] > target_h:
            y_offset = random.randint(0, padded_img.shape[0] - target_h)
        if padded_img.shape[1] > target_w:
            x_offset = random.randint(0, padded_img.shape[1] - target_w)
        padded_cropped_img = padded_img[y_offset:y_offset + target_h,
                                        x_offset:x_offset + target_w]

        # 6. adjust bbox
        retrieve_gt_bboxes = retrieve_results['gt_bboxes']
        retrieve_gt_bboxes[:, 0::2] = retrieve_gt_bboxes[:, 0::2] * scale_ratio
        retrieve_gt_bboxes[:, 1::2] = retrieve_gt_bboxes[:, 1::2] * scale_ratio
        if self.bbox_clip_border:
            retrieve_gt_bboxes[:, 0::2] = np.clip(retrieve_gt_bboxes[:, 0::2],
                                                  0, origin_w)
            retrieve_gt_bboxes[:, 1::2] = np.clip(retrieve_gt_bboxes[:, 1::2],
                                                  0, origin_h)

        if is_filp:
            retrieve_gt_bboxes[:, 0::2] = (
                origin_w - retrieve_gt_bboxes[:, 0::2][:, ::-1])

        # 7. filter
        cp_retrieve_gt_bboxes = retrieve_gt_bboxes.copy()
        cp_retrieve_gt_bboxes[:, 0::2] = \
            cp_retrieve_gt_bboxes[:, 0::2] - x_offset
        cp_retrieve_gt_bboxes[:, 1::2] = \
            cp_retrieve_gt_bboxes[:, 1::2] - y_offset
        if self.bbox_clip_border:
            cp_retrieve_gt_bboxes[:, 0::2] = np.clip(
                cp_retrieve_gt_bboxes[:, 0::2], 0, target_w)
            cp_retrieve_gt_bboxes[:, 1::2] = np.clip(
                cp_retrieve_gt_bboxes[:, 1::2], 0, target_h)

        # 8. mix up
        ori_img = ori_img.astype(np.float32)
        mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)

        retrieve_gt_labels = retrieve_results['gt_labels']
        if not self.skip_filter:
            keep_list = self._filter_box_candidates(retrieve_gt_bboxes.T,
                                                    cp_retrieve_gt_bboxes.T)

            retrieve_gt_labels = retrieve_gt_labels[keep_list]
            cp_retrieve_gt_bboxes = cp_retrieve_gt_bboxes[keep_list]

        mixup_gt_bboxes = np.concatenate(
            (results['gt_bboxes'], cp_retrieve_gt_bboxes), axis=0)
        mixup_gt_labels = np.concatenate(
            (results['gt_labels'], retrieve_gt_labels), axis=0)

        # remove outside bbox
        inside_inds = find_inside_bboxes(mixup_gt_bboxes, target_h, target_w)
        mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
        mixup_gt_labels = mixup_gt_labels[inside_inds]

        results['img'] = mixup_img.astype(np.uint8)
        results['img_shape'] = mixup_img.shape
        results['gt_bboxes'] = mixup_gt_bboxes
        results['gt_labels'] = mixup_gt_labels

        return results

    def _filter_box_candidates(self, bbox1, bbox2):
        """Compute candidate boxes which include following 5 things:

        bbox1 before augment, bbox2 after augment, min_bbox_size (pixels),
        min_area_ratio, max_aspect_ratio.
        """

        w1, h1 = bbox1[2] - bbox1[0], bbox1[3] - bbox1[1]
        w2, h2 = bbox2[2] - bbox2[0], bbox2[3] - bbox2[1]
        ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))
        return ((w2 > self.min_bbox_size)
                & (h2 > self.min_bbox_size)
                & (w2 * h2 / (w1 * h1 + 1e-16) > self.min_area_ratio)
                & (ar < self.max_aspect_ratio))

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'dynamic_scale={self.dynamic_scale}, '
        repr_str += f'ratio_range={self.ratio_range}, '
        repr_str += f'flip_ratio={self.flip_ratio}, '
        repr_str += f'pad_val={self.pad_val}, '
        repr_str += f'max_iters={self.max_iters}, '
        repr_str += f'min_bbox_size={self.min_bbox_size}, '
        repr_str += f'min_area_ratio={self.min_area_ratio}, '
        repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, '
        repr_str += f'skip_filter={self.skip_filter})'
        return repr_str


@PIPELINES.register_module()
class RandomAffine:
    """Random affine transform data augmentation.

    This operation randomly generates affine transform matrix which including
    rotation, translation, shear and scaling transforms.

    Args:
        max_rotate_degree (float): Maximum degrees of rotation transform.
            Default: 10.
        max_translate_ratio (float): Maximum ratio of translation.
            Default: 0.1.
        scaling_ratio_range (tuple[float]): Min and max ratio of
            scaling transform. Default: (0.5, 1.5).
        max_shear_degree (float): Maximum degrees of shear
            transform. Default: 2.
        border (tuple[int]): Distance from height and width sides of input
            image to adjust output shape. Only used in mosaic dataset.
            Default: (0, 0).
        border_val (tuple[int]): Border padding values of 3 channels.
            Default: (114, 114, 114).
        min_bbox_size (float): Width and height threshold to filter bboxes.
            If the height or width of a box is smaller than this value, it
            will be removed. Default: 2.
        min_area_ratio (float): Threshold of area ratio between
            original bboxes and wrapped bboxes. If smaller than this value,
            the box will be removed. Default: 0.2.
        max_aspect_ratio (float): Aspect ratio of width and height
            threshold to filter bboxes. If max(h/w, w/h) larger than this
            value, the box will be removed.
        bbox_clip_border (bool, optional): Whether to clip the objects outside
            the border of the image. In some dataset like MOT17, the gt bboxes
            are allowed to cross the border of images. Therefore, we don't
            need to clip the gt bboxes in these cases. Defaults to True.
        skip_filter (bool): Whether to skip filtering rules. If it
            is True, the filter rule will not be applied, and the
            `min_bbox_size` and `min_area_ratio` and `max_aspect_ratio`
            is invalid. Default to True.
    """

    def __init__(self,
                 max_rotate_degree=10.0,
                 max_translate_ratio=0.1,
                 scaling_ratio_range=(0.5, 1.5),
                 max_shear_degree=2.0,
                 border=(0, 0),
                 border_val=(114, 114, 114),
                 min_bbox_size=2,
                 min_area_ratio=0.2,
                 max_aspect_ratio=20,
                 bbox_clip_border=True,
                 skip_filter=True):
        assert 0 <= max_translate_ratio <= 1
        assert scaling_ratio_range[0] <= scaling_ratio_range[1]
        assert scaling_ratio_range[0] > 0
        self.max_rotate_degree = max_rotate_degree
        self.max_translate_ratio = max_translate_ratio
        self.scaling_ratio_range = scaling_ratio_range
        self.max_shear_degree = max_shear_degree
        self.border = border
        self.border_val = border_val
        self.min_bbox_size = min_bbox_size
        self.min_area_ratio = min_area_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.bbox_clip_border = bbox_clip_border
        self.skip_filter = skip_filter

    def __call__(self, results):
        img = results['img']
        height = img.shape[0] + self.border[0] * 2
        width = img.shape[1] + self.border[1] * 2

        # Rotation
        rotation_degree = random.uniform(-self.max_rotate_degree,
                                         self.max_rotate_degree)
        rotation_matrix = self._get_rotation_matrix(rotation_degree)

        # Scaling
        scaling_ratio = random.uniform(self.scaling_ratio_range[0],
                                       self.scaling_ratio_range[1])
        scaling_matrix = self._get_scaling_matrix(scaling_ratio)

        # Shear
        x_degree = random.uniform(-self.max_shear_degree,
                                  self.max_shear_degree)
        y_degree = random.uniform(-self.max_shear_degree,
                                  self.max_shear_degree)
        shear_matrix = self._get_shear_matrix(x_degree, y_degree)

        # Translation
        trans_x = random.uniform(-self.max_translate_ratio,
                                 self.max_translate_ratio) * width
        trans_y = random.uniform(-self.max_translate_ratio,
                                 self.max_translate_ratio) * height
        translate_matrix = self._get_translation_matrix(trans_x, trans_y)

        warp_matrix = (
            translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix)

        img = cv2.warpPerspective(
            img,
            warp_matrix,
            dsize=(width, height),
            borderValue=self.border_val)
        results['img'] = img
        results['img_shape'] = img.shape

        for key in results.get('bbox_fields', []):
            bboxes = results[key]
            num_bboxes = len(bboxes)
            if num_bboxes:
                # homogeneous coordinates
                xs = bboxes[:, [0, 0, 2, 2]].reshape(num_bboxes * 4)
                ys = bboxes[:, [1, 3, 3, 1]].reshape(num_bboxes * 4)
                ones = np.ones_like(xs)
                points = np.vstack([xs, ys, ones])

                warp_points = warp_matrix @ points
                warp_points = warp_points[:2] / warp_points[2]
                xs = warp_points[0].reshape(num_bboxes, 4)
                ys = warp_points[1].reshape(num_bboxes, 4)

                warp_bboxes = np.vstack(
                    (xs.min(1), ys.min(1), xs.max(1), ys.max(1))).T

                if self.bbox_clip_border:
                    warp_bboxes[:, [0, 2]] = \
                        warp_bboxes[:, [0, 2]].clip(0, width)
                    warp_bboxes[:, [1, 3]] = \
                        warp_bboxes[:, [1, 3]].clip(0, height)

                # remove outside bbox
                valid_index = find_inside_bboxes(warp_bboxes, height, width)
                if not self.skip_filter:
                    # filter bboxes
                    filter_index = self.filter_gt_bboxes(
                        bboxes * scaling_ratio, warp_bboxes)
                    valid_index = valid_index & filter_index

                results[key] = warp_bboxes[valid_index]
                if key in ['gt_bboxes']:
                    if 'gt_labels' in results:
                        results['gt_labels'] = results['gt_labels'][
                            valid_index]

                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'RandomAffine only supports bbox.')
        return results

    def filter_gt_bboxes(self, origin_bboxes, wrapped_bboxes):
        origin_w = origin_bboxes[:, 2] - origin_bboxes[:, 0]
        origin_h = origin_bboxes[:, 3] - origin_bboxes[:, 1]
        wrapped_w = wrapped_bboxes[:, 2] - wrapped_bboxes[:, 0]
        wrapped_h = wrapped_bboxes[:, 3] - wrapped_bboxes[:, 1]
        aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16),
                                  wrapped_h / (wrapped_w + 1e-16))

        wh_valid_idx = (wrapped_w > self.min_bbox_size) & \
                       (wrapped_h > self.min_bbox_size)
        area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h +
                                                  1e-16) > self.min_area_ratio
        aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio
        return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(max_rotate_degree={self.max_rotate_degree}, '
        repr_str += f'max_translate_ratio={self.max_translate_ratio}, '
        repr_str += f'scaling_ratio={self.scaling_ratio_range}, '
        repr_str += f'max_shear_degree={self.max_shear_degree}, '
        repr_str += f'border={self.border}, '
        repr_str += f'border_val={self.border_val}, '
        repr_str += f'min_bbox_size={self.min_bbox_size}, '
        repr_str += f'min_area_ratio={self.min_area_ratio}, '
        repr_str += f'max_aspect_ratio={self.max_aspect_ratio}, '
        repr_str += f'skip_filter={self.skip_filter})'
        return repr_str

    @staticmethod
    def _get_rotation_matrix(rotate_degrees):
        radian = math.radians(rotate_degrees)
        rotation_matrix = np.array(
            [[np.cos(radian), -np.sin(radian), 0.],
             [np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]],
            dtype=np.float32)
        return rotation_matrix

    @staticmethod
    def _get_scaling_matrix(scale_ratio):
        scaling_matrix = np.array(
            [[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
            dtype=np.float32)
        return scaling_matrix

    @staticmethod
    def _get_share_matrix(scale_ratio):
        scaling_matrix = np.array(
            [[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
            dtype=np.float32)
        return scaling_matrix

    @staticmethod
    def _get_shear_matrix(x_shear_degrees, y_shear_degrees):
        x_radian = math.radians(x_shear_degrees)
        y_radian = math.radians(y_shear_degrees)
        shear_matrix = np.array([[1, np.tan(x_radian), 0.],
                                 [np.tan(y_radian), 1, 0.], [0., 0., 1.]],
                                dtype=np.float32)
        return shear_matrix

    @staticmethod
    def _get_translation_matrix(x, y):
        translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]],
                                      dtype=np.float32)
        return translation_matrix


@PIPELINES.register_module()
class YOLOXHSVRandomAug:
    """Apply HSV augmentation to image sequentially. It is referenced from
    https://github.com/Megvii-
    BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21.

    Args:
        hue_delta (int): delta of hue. Default: 5.
        saturation_delta (int): delta of saturation. Default: 30.
        value_delta (int): delat of value. Default: 30.
    """

    def __init__(self, hue_delta=5, saturation_delta=30, value_delta=30):
        self.hue_delta = hue_delta
        self.saturation_delta = saturation_delta
        self.value_delta = value_delta

    def __call__(self, results):
        img = results['img']
        hsv_gains = np.random.uniform(-1, 1, 3) * [
            self.hue_delta, self.saturation_delta, self.value_delta
        ]
        # random selection of h, s, v
        hsv_gains *= np.random.randint(0, 2, 3)
        # prevent overflow
        hsv_gains = hsv_gains.astype(np.int16)
        img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16)

        img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180
        img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255)
        img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255)
        cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img)

        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(hue_delta={self.hue_delta}, '
        repr_str += f'saturation_delta={self.saturation_delta}, '
        repr_str += f'value_delta={self.value_delta})'
        return repr_str


@PIPELINES.register_module()
class CopyPaste:
    """Simple Copy-Paste is a Strong Data Augmentation Method for Instance
    Segmentation The simple copy-paste transform steps are as follows:

    1. The destination image is already resized with aspect ratio kept,
       cropped and padded.
    2. Randomly select a source image, which is also already resized
       with aspect ratio kept, cropped and padded in a similar way
       as the destination image.
    3. Randomly select some objects from the source image.
    4. Paste these source objects to the destination image directly,
       due to the source and destination image have the same size.
    5. Update object masks of the destination image, for some origin objects
       may be occluded.
    6. Generate bboxes from the updated destination masks and
       filter some objects which are totally occluded, and adjust bboxes
       which are partly occluded.
    7. Append selected source bboxes, masks, and labels.

    Args:
        max_num_pasted (int): The maximum number of pasted objects.
            Default: 100.
        bbox_occluded_thr (int): The threshold of occluded bbox.
            Default: 10.
        mask_occluded_thr (int): The threshold of occluded mask.
            Default: 300.
        selected (bool): Whether select objects or not. If select is False,
            all objects of the source image will be pasted to the
            destination image.
            Default: True.
    """

    def __init__(
        self,
        max_num_pasted=100,
        bbox_occluded_thr=10,
        mask_occluded_thr=300,
        selected=True,
    ):
        self.max_num_pasted = max_num_pasted
        self.bbox_occluded_thr = bbox_occluded_thr
        self.mask_occluded_thr = mask_occluded_thr
        self.selected = selected
        self.paste_by_box = False

    def get_indexes(self, dataset):
        """Call function to collect indexes.s.

        Args:
            dataset (:obj:`MultiImageMixDataset`): The dataset.
        Returns:
            list: Indexes.
        """
        return random.randint(0, len(dataset))

    def gen_masks_from_bboxes(self, bboxes, img_shape):
        """Generate gt_masks based on gt_bboxes.

        Args:
            bboxes (list): The bboxes's list.
            img_shape (tuple): The shape of image.
        Returns:
            BitmapMasks
        """
        self.paste_by_box = True
        img_h, img_w = img_shape[:2]
        xmin, ymin = bboxes[:, 0:1], bboxes[:, 1:2]
        xmax, ymax = bboxes[:, 2:3], bboxes[:, 3:4]
        gt_masks = np.zeros((len(bboxes), img_h, img_w), dtype=np.uint8)
        for i in range(len(bboxes)):
            gt_masks[i,
                     int(ymin[i]):int(ymax[i]),
                     int(xmin[i]):int(xmax[i])] = 1
        return BitmapMasks(gt_masks, img_h, img_w)

    def get_gt_masks(self, results):
        """Get gt_masks originally or generated based on bboxes.

        If gt_masks is not contained in results,
        it will be generated based on gt_bboxes.
        Args:
            results (dict): Result dict.
        Returns:
            BitmapMasks: gt_masks, originally or generated based on bboxes.
        """
        if results.get('gt_masks', None) is not None:
            return results['gt_masks']
        else:
            return self.gen_masks_from_bboxes(
                results.get('gt_bboxes', []), results['img'].shape)

    def __call__(self, results):
        """Call function to make a copy-paste of image.

        Args:
            results (dict): Result dict.
        Returns:
            dict: Result dict with copy-paste transformed.
        """

        assert 'mix_results' in results
        num_images = len(results['mix_results'])
        assert num_images == 1, \
            f'CopyPaste only supports processing 2 images, got {num_images}'

        # Get gt_masks originally or generated based on bboxes.
        results['gt_masks'] = self.get_gt_masks(results)
        # only one mix picture
        results['mix_results'][0]['gt_masks'] = self.get_gt_masks(
            results['mix_results'][0])

        if self.selected:
            selected_results = self._select_object(results['mix_results'][0])
        else:
            selected_results = results['mix_results'][0]
        return self._copy_paste(results, selected_results)

    def _select_object(self, results):
        """Select some objects from the source results."""
        bboxes = results['gt_bboxes']
        labels = results['gt_labels']
        masks = results['gt_masks']
        max_num_pasted = min(bboxes.shape[0] + 1, self.max_num_pasted)
        num_pasted = np.random.randint(0, max_num_pasted)
        selected_inds = np.random.choice(
            bboxes.shape[0], size=num_pasted, replace=False)

        selected_bboxes = bboxes[selected_inds]
        selected_labels = labels[selected_inds]
        selected_masks = masks[selected_inds]

        results['gt_bboxes'] = selected_bboxes
        results['gt_labels'] = selected_labels
        results['gt_masks'] = selected_masks
        return results

    def _copy_paste(self, dst_results, src_results):
        """CopyPaste transform function.

        Args:
            dst_results (dict): Result dict of the destination image.
            src_results (dict): Result dict of the source image.
        Returns:
            dict: Updated result dict.
        """
        dst_img = dst_results['img']
        dst_bboxes = dst_results['gt_bboxes']
        dst_labels = dst_results['gt_labels']
        dst_masks = dst_results['gt_masks']

        src_img = src_results['img']
        src_bboxes = src_results['gt_bboxes']
        src_labels = src_results['gt_labels']
        src_masks = src_results['gt_masks']

        if len(src_bboxes) == 0:
            if self.paste_by_box:
                dst_results.pop('gt_masks')
            return dst_results

        # update masks and generate bboxes from updated masks
        composed_mask = np.where(np.any(src_masks.masks, axis=0), 1, 0)
        updated_dst_masks = self.get_updated_masks(dst_masks, composed_mask)
        updated_dst_bboxes = updated_dst_masks.get_bboxes()
        assert len(updated_dst_bboxes) == len(updated_dst_masks)

        # filter totally occluded objects
        bboxes_inds = np.all(
            np.abs(
                (updated_dst_bboxes - dst_bboxes)) <= self.bbox_occluded_thr,
            axis=-1)
        masks_inds = updated_dst_masks.masks.sum(
            axis=(1, 2)) > self.mask_occluded_thr
        valid_inds = bboxes_inds | masks_inds

        # Paste source objects to destination image directly
        img = dst_img * (1 - composed_mask[..., np.newaxis]
                         ) + src_img * composed_mask[..., np.newaxis]
        bboxes = np.concatenate([updated_dst_bboxes[valid_inds], src_bboxes])
        labels = np.concatenate([dst_labels[valid_inds], src_labels])
        masks = np.concatenate(
            [updated_dst_masks.masks[valid_inds], src_masks.masks])

        dst_results['img'] = img
        dst_results['gt_bboxes'] = bboxes
        dst_results['gt_labels'] = labels
        if self.paste_by_box:
            dst_results.pop('gt_masks')
        else:
            dst_results['gt_masks'] = BitmapMasks(masks, masks.shape[1],
                                                  masks.shape[2])

        return dst_results

    def get_updated_masks(self, masks, composed_mask):
        assert masks.masks.shape[-2:] == composed_mask.shape[-2:], \
            'Cannot compare two arrays of different size'
        masks.masks = np.where(composed_mask, 0, masks.masks)
        return masks

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'max_num_pasted={self.max_num_pasted}, '
        repr_str += f'bbox_occluded_thr={self.bbox_occluded_thr}, '
        repr_str += f'mask_occluded_thr={self.mask_occluded_thr}, '
        repr_str += f'selected={self.selected}, '
        return repr_str