Spaces:
Runtime error
Runtime error
File size: 7,469 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
import numpy as np
import torch
from mmdet.core import bbox2result
from mmdet.models import BaseDetector
class DeployBaseDetector(BaseDetector):
"""DeployBaseDetector."""
def __init__(self, class_names, device_id):
super(DeployBaseDetector, self).__init__()
self.CLASSES = class_names
self.device_id = device_id
def simple_test(self, img, img_metas, **kwargs):
raise NotImplementedError('This method is not implemented.')
def aug_test(self, imgs, img_metas, **kwargs):
raise NotImplementedError('This method is not implemented.')
def extract_feat(self, imgs):
raise NotImplementedError('This method is not implemented.')
def forward_train(self, imgs, img_metas, **kwargs):
raise NotImplementedError('This method is not implemented.')
def val_step(self, data, optimizer):
raise NotImplementedError('This method is not implemented.')
def train_step(self, data, optimizer):
raise NotImplementedError('This method is not implemented.')
def forward_test(self, *, img, img_metas, **kwargs):
raise NotImplementedError('This method is not implemented.')
def async_simple_test(self, img, img_metas, **kwargs):
raise NotImplementedError('This method is not implemented.')
def forward(self, img, img_metas, return_loss=True, **kwargs):
outputs = self.forward_test(img, img_metas, **kwargs)
batch_dets, batch_labels = outputs[:2]
batch_masks = outputs[2] if len(outputs) == 3 else None
batch_size = img[0].shape[0]
img_metas = img_metas[0]
results = []
rescale = kwargs.get('rescale', True)
for i in range(batch_size):
dets, labels = batch_dets[i], batch_labels[i]
if rescale:
scale_factor = img_metas[i]['scale_factor']
if isinstance(scale_factor, (list, tuple, np.ndarray)):
assert len(scale_factor) == 4
scale_factor = np.array(scale_factor)[None, :] # [1,4]
dets[:, :4] /= scale_factor
if 'border' in img_metas[i]:
# offset pixel of the top-left corners between original image
# and padded/enlarged image, 'border' is used when exporting
# CornerNet and CentripetalNet to onnx
x_off = img_metas[i]['border'][2]
y_off = img_metas[i]['border'][0]
dets[:, [0, 2]] -= x_off
dets[:, [1, 3]] -= y_off
dets[:, :4] *= (dets[:, :4] > 0).astype(dets.dtype)
dets_results = bbox2result(dets, labels, len(self.CLASSES))
if batch_masks is not None:
masks = batch_masks[i]
img_h, img_w = img_metas[i]['img_shape'][:2]
ori_h, ori_w = img_metas[i]['ori_shape'][:2]
masks = masks[:, :img_h, :img_w]
if rescale:
masks = masks.astype(np.float32)
masks = torch.from_numpy(masks)
masks = torch.nn.functional.interpolate(
masks.unsqueeze(0), size=(ori_h, ori_w))
masks = masks.squeeze(0).detach().numpy()
if masks.dtype != bool:
masks = masks >= 0.5
segms_results = [[] for _ in range(len(self.CLASSES))]
for j in range(len(dets)):
segms_results[labels[j]].append(masks[j])
results.append((dets_results, segms_results))
else:
results.append(dets_results)
return results
class ONNXRuntimeDetector(DeployBaseDetector):
"""Wrapper for detector's inference with ONNXRuntime."""
def __init__(self, onnx_file, class_names, device_id):
super(ONNXRuntimeDetector, self).__init__(class_names, device_id)
import onnxruntime as ort
# get the custom op path
ort_custom_op_path = ''
try:
from mmcv.ops import get_onnxruntime_op_path
ort_custom_op_path = get_onnxruntime_op_path()
except (ImportError, ModuleNotFoundError):
warnings.warn('If input model has custom op from mmcv, \
you may have to build mmcv with ONNXRuntime from source.')
session_options = ort.SessionOptions()
# register custom op for onnxruntime
if osp.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
sess = ort.InferenceSession(onnx_file, session_options)
providers = ['CPUExecutionProvider']
options = [{}]
is_cuda_available = ort.get_device() == 'GPU'
if is_cuda_available:
providers.insert(0, 'CUDAExecutionProvider')
options.insert(0, {'device_id': device_id})
sess.set_providers(providers, options)
self.sess = sess
self.io_binding = sess.io_binding()
self.output_names = [_.name for _ in sess.get_outputs()]
self.is_cuda_available = is_cuda_available
def forward_test(self, imgs, img_metas, **kwargs):
input_data = imgs[0]
# set io binding for inputs/outputs
device_type = 'cuda' if self.is_cuda_available else 'cpu'
if not self.is_cuda_available:
input_data = input_data.cpu()
self.io_binding.bind_input(
name='input',
device_type=device_type,
device_id=self.device_id,
element_type=np.float32,
shape=input_data.shape,
buffer_ptr=input_data.data_ptr())
for name in self.output_names:
self.io_binding.bind_output(name)
# run session to get outputs
self.sess.run_with_iobinding(self.io_binding)
ort_outputs = self.io_binding.copy_outputs_to_cpu()
return ort_outputs
class TensorRTDetector(DeployBaseDetector):
"""Wrapper for detector's inference with TensorRT."""
def __init__(self, engine_file, class_names, device_id, output_names=None):
super(TensorRTDetector, self).__init__(class_names, device_id)
warnings.warn('`output_names` is deprecated and will be removed in '
'future releases.')
from mmcv.tensorrt import TRTWraper, load_tensorrt_plugin
try:
load_tensorrt_plugin()
except (ImportError, ModuleNotFoundError):
warnings.warn('If input model has custom op from mmcv, \
you may have to build mmcv with TensorRT from source.')
output_names = ['dets', 'labels']
model = TRTWraper(engine_file, ['input'], output_names)
with_masks = False
# if TensorRT has totally 4 inputs/outputs, then
# the detector should have `mask` output.
if len(model.engine) == 4:
model.output_names = output_names + ['masks']
with_masks = True
self.model = model
self.with_masks = with_masks
def forward_test(self, imgs, img_metas, **kwargs):
input_data = imgs[0].contiguous()
with torch.cuda.device(self.device_id), torch.no_grad():
outputs = self.model({'input': input_data})
outputs = [outputs[name] for name in self.model.output_names]
outputs = [out.detach().cpu().numpy() for out in outputs]
return outputs
|