Spaces:
Runtime error
Runtime error
File size: 35,084 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import csv
import json
import os.path as osp
import warnings
from collections import OrderedDict, defaultdict
import mmcv
import numpy as np
import torch.distributed as dist
from mmcv.runner import get_dist_info
from mmcv.utils import print_log
from mmdet.core import eval_map
from .builder import DATASETS
from .custom import CustomDataset
@DATASETS.register_module()
class OpenImagesDataset(CustomDataset):
"""Open Images dataset for detection.
Args:
ann_file (str): Annotation file path.
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
image_level_ann_file (str): Image level annotation, which is used
in evaluation.
get_supercategory (bool): Whether to get parent class of the
current class. Default: True.
hierarchy_file (str): The file path of the class hierarchy.
Default: None.
get_metas (bool): Whether to get image metas in testing or
validation time. This should be `True` during evaluation.
Default: True. The OpenImages annotations do not have image
metas (width and height of the image), which will be used
during evaluation. We provide two ways to get image metas
in `OpenImagesDataset`:
- 1. `load from file`: Load image metas from pkl file, which
is suggested to use. We provided a script to get image metas:
`tools/misc/get_image_metas.py`, which need to run
this script before training/testing. Please refer to
`config/openimages/README.md` for more details.
- 2. `load from pipeline`, which will get image metas during
test time. However, this may reduce the inference speed,
especially when using distribution.
load_from_file (bool): Whether to get image metas from pkl file.
meta_file (str): File path to get image metas.
filter_labels (bool): Whether filter unannotated classes.
Default: True.
load_image_level_labels (bool): Whether load and consider image
level labels during evaluation. Default: True.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmcv.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
"""
def __init__(self,
ann_file,
label_file='',
image_level_ann_file='',
get_supercategory=True,
hierarchy_file=None,
get_metas=True,
load_from_file=True,
meta_file='',
filter_labels=True,
load_image_level_labels=True,
file_client_args=dict(backend='disk'),
**kwargs):
# may get error if use other file_client
self.file_client_args = file_client_args
self.cat2label = defaultdict(str)
self.index_dict = {}
# Although it will init file_client in `CustomDataset`,
# it needs to be init here.
file_client = mmcv.FileClient(**file_client_args)
# need get `index_dict` before load annotations
assert label_file.endswith('csv')
if hasattr(file_client, 'get_local_path'):
with file_client.get_local_path(label_file) as local_path:
class_names = self.get_classes_from_csv(local_path)
else:
class_names = self.get_classes_from_csv(label_file)
super(OpenImagesDataset, self).__init__(
ann_file=ann_file, file_client_args=file_client_args, **kwargs)
self.CLASSES = class_names
self.image_level_ann_file = image_level_ann_file
self.load_image_level_labels = load_image_level_labels
if get_supercategory is True:
assert hierarchy_file is not None
if self.__class__.__name__ == 'OpenImagesDataset':
assert hierarchy_file.endswith('json')
elif self.__class__.__name__ == 'OpenImagesChallengeDataset':
assert hierarchy_file.endswith('np')
else:
raise NotImplementedError
if hasattr(self.file_client, 'get_local_path'):
with self.file_client.get_local_path(
hierarchy_file) as local_path:
self.class_label_tree = self.get_relation_matrix(
local_path)
else:
self.class_label_tree = self.get_relation_matrix(
hierarchy_file)
self.get_supercategory = get_supercategory
self.get_metas = get_metas
self.load_from_file = load_from_file
self.meta_file = meta_file
if self.data_root is not None:
if not osp.isabs(self.meta_file):
self.meta_file = osp.join(self.data_root, self.meta_file)
self.filter_labels = filter_labels
self.rank, self.world_size = get_dist_info()
self.temp_img_metas = []
self.test_img_metas = []
self.test_img_shapes = []
self.load_from_pipeline = False if load_from_file else True
def get_classes_from_csv(self, label_file):
"""Get classes name from file.
Args:
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
Returns:
list[str]: Class name of OpenImages.
"""
index_list = []
classes_names = []
with open(label_file, 'r') as f:
reader = csv.reader(f)
for line in reader:
self.cat2label[line[0]] = line[1]
classes_names.append(line[1])
index_list.append(line[0])
self.index_dict = {index: i for i, index in enumerate(index_list)}
return classes_names
def load_annotations(self, ann_file):
"""Load annotation from annotation file.
Special described `self.data_infos` (defaultdict[list[dict]])
in this function: Annotations where item of the defaultdict
indicates an image, each of which has (n) dicts. Keys of dicts are:
- `bbox` (list): coordinates of the box, in normalized image
coordinates, of shape 4.
- `label` (int): the label id.
- `is_group_of` (bool): Indicates that the box spans a group
of objects (e.g., a bed of flowers or a crowd of people).
- `is_occluded` (bool): Indicates that the object is occluded
by another object in the image.
- `is_truncated` (bool): Indicates that the object extends
beyond the boundary of the image.
- `is_depiction` (bool): Indicates that the object is a
depiction.
- `is_inside` (bool): Indicates a picture taken from the
inside of the object.
Args:
ann_file (str): CSV style annotation file path.
Returns:
list[dict]: Data infos where each item of the list
indicates an image. Keys of annotations are:
- `img_id` (str): Image name.
- `filename` (str): Image name with suffix.
"""
self.ann_infos = defaultdict(list)
data_infos = []
cp_filename = None
with open(ann_file, 'r') as f:
reader = csv.reader(f)
for i, line in enumerate(reader):
if i == 0:
continue
img_id = line[0]
filename = f'{img_id}.jpg'
label_id = line[2]
assert label_id in self.index_dict
label = int(self.index_dict[label_id])
bbox = [
float(line[4]), # xmin
float(line[6]), # ymin
float(line[5]), # xmax
float(line[7]) # ymax
]
is_occluded = True if int(line[8]) == 1 else False
is_truncated = True if int(line[9]) == 1 else False
is_group_of = True if int(line[10]) == 1 else False
is_depiction = True if int(line[11]) == 1 else False
is_inside = True if int(line[12]) == 1 else False
self.ann_infos[img_id].append(
dict(
bbox=bbox,
label=label,
is_occluded=is_occluded,
is_truncated=is_truncated,
is_group_of=is_group_of,
is_depiction=is_depiction,
is_inside=is_inside))
if filename != cp_filename:
data_infos.append(dict(img_id=img_id, filename=filename))
cp_filename = filename
return data_infos
def get_ann_info(self, idx):
"""Get OpenImages annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
img_id = self.data_infos[idx]['img_id']
bboxes = []
labels = []
bboxes_ignore = []
labels_ignore = []
is_occludeds = []
is_truncateds = []
is_group_ofs = []
is_depictions = []
is_insides = []
for obj in self.ann_infos[img_id]:
label = int(obj['label'])
bbox = [
float(obj['bbox'][0]),
float(obj['bbox'][1]),
float(obj['bbox'][2]),
float(obj['bbox'][3])
]
bboxes.append(bbox)
labels.append(label)
# Other parameters
is_occludeds.append(obj['is_occluded'])
is_truncateds.append(obj['is_truncated'])
is_group_ofs.append(obj['is_group_of'])
is_depictions.append(obj['is_depiction'])
is_insides.append(obj['is_inside'])
if not bboxes:
bboxes = np.zeros((0, 4))
labels = np.zeros((0, ))
else:
bboxes = np.array(bboxes)
labels = np.array(labels)
if not bboxes_ignore:
bboxes_ignore = np.zeros((0, 4))
labels_ignore = np.zeros((0, ))
else:
bboxes_ignore = np.array(bboxes_ignore)
labels_ignore = np.array(labels_ignore)
assert len(is_group_ofs) == len(labels) == len(bboxes)
gt_is_group_ofs = np.array(is_group_ofs, dtype=bool)
# These parameters is not used yet.
is_occludeds = np.array(is_occludeds, dtype=bool)
is_truncateds = np.array(is_truncateds, dtype=bool)
is_depictions = np.array(is_depictions, dtype=bool)
is_insides = np.array(is_insides, dtype=bool)
ann = dict(
bboxes=bboxes.astype(np.float32),
labels=labels.astype(np.int64),
bboxes_ignore=bboxes_ignore.astype(np.float32),
labels_ignore=labels_ignore.astype(np.int64),
gt_is_group_ofs=gt_is_group_ofs,
is_occludeds=is_occludeds,
is_truncateds=is_truncateds,
is_depictions=is_depictions,
is_insides=is_insides)
return ann
def get_meta_from_file(self, meta_file=''):
"""Get image metas from pkl file."""
metas = mmcv.load(
meta_file,
file_format='pkl',
file_client_args=self.file_client_args)
assert len(metas) == len(self)
for i in range(len(metas)):
file_name = osp.split(metas[i]['filename'])[-1]
img_info = self.data_infos[i].get('img_info', None)
if img_info is not None:
assert file_name == osp.split(img_info['filename'])[-1]
else:
assert file_name == self.data_infos[i]['filename']
hw = metas[i]['ori_shape'][:2]
self.test_img_shapes.append(hw)
def get_meta_from_pipeline(self, results):
"""Get image metas from pipeline."""
self.temp_img_metas.extend(results['img_metas'])
if dist.is_available() and self.world_size > 1:
from mmdet.apis.test import collect_results_cpu
self.test_img_metas = collect_results_cpu(self.temp_img_metas,
len(self))
else:
self.test_img_metas = self.temp_img_metas
def get_img_shape(self, metas):
"""Set images original shape into data_infos."""
assert len(metas) == len(self)
for i in range(len(metas)):
file_name = osp.split(metas[i].data['ori_filename'])[-1]
img_info = self.data_infos[i].get('img_info', None)
if img_info is not None:
assert file_name == osp.split(img_info['filename'])[-1]
else:
assert file_name == self.data_infos[i]['filename']
hw = metas[i].data['ori_shape'][:2]
self.test_img_shapes.append(hw)
def prepare_test_img(self, idx):
"""Get testing data after pipeline."""
img_info = self.data_infos[idx]
results = dict(img_info=img_info)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
results = self.pipeline(results)
if self.get_metas and self.load_from_pipeline:
self.get_meta_from_pipeline(results)
return results
def _filter_imgs(self, min_size=32):
"""Filter images too small."""
if self.filter_empty_gt:
warnings.warn('OpenImageDatasets does not support '
'filtering empty gt images.')
valid_inds = [i for i in range(len(self))]
return valid_inds
def _set_group_flag(self):
"""Set flag according to image aspect ratio."""
self.flag = np.zeros(len(self), dtype=np.uint8)
# TODO: set flag without width and height
def get_relation_matrix(self, hierarchy_file):
"""Get hierarchy for classes.
Args:
hierarchy_file (sty): File path to the hierarchy for classes.
Returns:
ndarray: The matrix of the corresponding relationship between
the parent class and the child class, of shape
(class_num, class_num).
"""
if self.data_root is not None:
if not osp.isabs(hierarchy_file):
hierarchy_file = osp.join(self.data_root, hierarchy_file)
with open(hierarchy_file, 'r') as f:
hierarchy = json.load(f)
class_num = len(self.CLASSES)
class_label_tree = np.eye(class_num, class_num)
class_label_tree = self._convert_hierarchy_tree(
hierarchy, class_label_tree)
return class_label_tree
def _convert_hierarchy_tree(self,
hierarchy_map,
class_label_tree,
parents=[],
get_all_parents=True):
"""Get matrix of the corresponding relationship between the parent
class and the child class.
Args:
hierarchy_map (dict): Including label name and corresponding
subcategory. Keys of dicts are:
- `LabeName` (str): Name of the label.
- `Subcategory` (dict | list): Corresponding subcategory(ies).
class_label_tree (ndarray): The matrix of the corresponding
relationship between the parent class and the child class,
of shape (class_num, class_num).
parents (list): Corresponding parent class.
get_all_parents (bool): Whether get all parent names.
Default: True
Returns:
ndarray: The matrix of the corresponding relationship between
the parent class and the child class, of shape
(class_num, class_num).
"""
if 'Subcategory' in hierarchy_map:
for node in hierarchy_map['Subcategory']:
if 'LabelName' in node:
children_name = node['LabelName']
children_index = self.index_dict[children_name]
children = [children_index]
else:
continue
if len(parents) > 0:
for parent_index in parents:
if get_all_parents:
children.append(parent_index)
class_label_tree[children_index, parent_index] = 1
class_label_tree = self._convert_hierarchy_tree(
node, class_label_tree, parents=children)
return class_label_tree
def add_supercategory_ann(self, annotations):
"""Add parent classes of the corresponding class of the ground truth
bboxes."""
for i, ann in enumerate(annotations):
assert len(ann['labels']) == len(ann['bboxes']) == \
len(ann['gt_is_group_ofs'])
gt_bboxes = []
gt_is_group_ofs = []
gt_labels = []
for j in range(len(ann['labels'])):
label = ann['labels'][j]
bbox = ann['bboxes'][j]
is_group = ann['gt_is_group_ofs'][j]
label = np.where(self.class_label_tree[label])[0]
if len(label) > 1:
for k in range(len(label)):
gt_bboxes.append(bbox)
gt_is_group_ofs.append(is_group)
gt_labels.append(label[k])
else:
gt_bboxes.append(bbox)
gt_is_group_ofs.append(is_group)
gt_labels.append(label[0])
annotations[i] = dict(
bboxes=np.array(gt_bboxes).astype(np.float32),
labels=np.array(gt_labels).astype(np.int64),
bboxes_ignore=ann['bboxes_ignore'],
gt_is_group_ofs=np.array(gt_is_group_ofs).astype(bool))
return annotations
def process_results(self, det_results, annotations,
image_level_annotations):
"""Process results of the corresponding class of the detection bboxes.
Note: It will choose to do the following two processing according to
the parameters:
1. Whether to add parent classes of the corresponding class of the
detection bboxes.
2. Whether to ignore the classes that unannotated on that image.
"""
if image_level_annotations is not None:
assert len(annotations) == \
len(image_level_annotations) == \
len(det_results)
else:
assert len(annotations) == len(det_results)
for i in range(len(det_results)):
results = copy.deepcopy(det_results[i])
valid_classes = np.where(
np.array([[bbox.shape[0]] for bbox in det_results[i]]) != 0)[0]
if image_level_annotations is not None:
labels = annotations[i]['labels']
image_level_labels = \
image_level_annotations[i]['image_level_labels']
allowed_labeles = np.unique(
np.append(labels, image_level_labels))
else:
allowed_labeles = np.unique(annotations[i]['labels'])
for valid_class in valid_classes:
det_cls = np.where(self.class_label_tree[valid_class])[0]
for index in det_cls:
if index in allowed_labeles and \
index != valid_class and \
self.get_supercategory:
det_results[i][index] = \
np.concatenate((det_results[i][index],
results[valid_class]))
elif index not in allowed_labeles and self.filter_labels:
# Remove useless parts
det_results[i][index] = np.empty(
(0, 5)).astype(np.float32)
return det_results
def load_image_label_from_csv(self, image_level_ann_file):
"""Load image level annotations from csv style ann_file.
Args:
image_level_ann_file (str): CSV style image level annotation
file path.
Returns:
defaultdict[list[dict]]: Annotations where item of the defaultdict
indicates an image, each of which has (n) dicts.
Keys of dicts are:
- `image_level_label` (int): Label id.
- `confidence` (float): Labels that are human-verified to be
present in an image have confidence = 1 (positive labels).
Labels that are human-verified to be absent from an image
have confidence = 0 (negative labels). Machine-generated
labels have fractional confidences, generally >= 0.5.
The higher the confidence, the smaller the chance for
the label to be a false positive.
"""
item_lists = defaultdict(list)
with open(image_level_ann_file, 'r') as f:
reader = csv.reader(f)
for i, line in enumerate(reader):
if i == 0:
continue
img_id = line[0]
item_lists[img_id].append(
dict(
image_level_label=int(self.index_dict[line[2]]),
confidence=float(line[3])))
return item_lists
def get_image_level_ann(self, image_level_ann_file):
"""Get OpenImages annotation by index.
Args:
image_level_ann_file (str): CSV style image level annotation
file path.
Returns:
dict: Annotation info of specified index.
"""
if hasattr(self.file_client, 'get_local_path'):
with self.file_client.get_local_path(image_level_ann_file) \
as local_path:
item_lists = self.load_image_label_from_csv(local_path)
else:
item_lists = self.load_image_label_from_csv(image_level_ann_file)
image_level_annotations = []
for i in range(len(self)):
img_info = self.data_infos[i].get('img_info', None)
if img_info is not None:
# for Open Images Challenges
img_id = osp.split(img_info['filename'])[-1][:-4]
else:
# for Open Images v6
img_id = self.data_infos[i]['img_id']
item_list = item_lists.get(img_id, None)
if item_list is not None:
image_level_labels = []
confidences = []
for obj in item_list:
image_level_label = int(obj['image_level_label'])
confidence = float(obj['confidence'])
image_level_labels.append(image_level_label)
confidences.append(confidence)
if not image_level_labels:
image_level_labels = np.zeros((0, ))
confidences = np.zeros((0, ))
else:
image_level_labels = np.array(image_level_labels)
confidences = np.array(confidences)
else:
image_level_labels = np.zeros((0, ))
confidences = np.zeros((0, ))
ann = dict(
image_level_labels=image_level_labels.astype(np.int64),
confidences=confidences.astype(np.float32))
image_level_annotations.append(ann)
return image_level_annotations
def denormalize_gt_bboxes(self, annotations):
"""Convert ground truth bboxes from relative position to absolute
position.
Only used in evaluating time.
"""
assert len(self.test_img_shapes) == len(annotations)
for i in range(len(annotations)):
h, w = self.test_img_shapes[i]
annotations[i]['bboxes'][:, 0::2] *= w
annotations[i]['bboxes'][:, 1::2] *= h
return annotations
def get_cat_ids(self, idx):
"""Get category ids by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
return self.get_ann_info(idx)['labels'].astype(np.int).tolist()
def evaluate(self,
results,
metric='mAP',
logger=None,
iou_thr=0.5,
ioa_thr=0.5,
scale_ranges=None,
denorm_gt_bbox=True,
use_group_of=True):
"""Evaluate in OpenImages.
Args:
results (list[list | tuple]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. Option is
'mAP'. Default: 'mAP'.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
iou_thr (float | list[float]): IoU threshold. Default: 0.5.
ioa_thr (float | list[float]): IoA threshold. Default: 0.5.
scale_ranges (list[tuple], optional): Scale ranges for evaluating
mAP. If not specified, all bounding boxes would be included in
evaluation. Default: None
denorm_gt_bbox (bool): Whether to denorm ground truth bboxes from
relative position to absolute position. Default: True
use_group_of (bool): Whether consider group of groud truth bboxes
during evaluating. Default: True.
Returns:
dict[str, float]: AP metrics.
"""
if not isinstance(metric, str):
assert len(metric) == 1
metric = metric[0]
allowed_metrics = ['mAP']
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
annotations = [self.get_ann_info(i) for i in range(len(self))]
if self.load_image_level_labels:
image_level_annotations = \
self.get_image_level_ann(self.image_level_ann_file)
else:
image_level_annotations = None
# load metas from file
if self.get_metas and self.load_from_file:
assert self.meta_file.endswith(
'pkl'), 'File name must be pkl suffix'
self.get_meta_from_file(self.meta_file)
# load metas from pipeline
else:
self.get_img_shape(self.test_img_metas)
if len(self.test_img_shapes) > len(self):
self.test_img_shapes = self.test_img_shapes[:len(self)]
if denorm_gt_bbox:
annotations = self.denormalize_gt_bboxes(annotations)
# Reset test_image_metas, temp_image_metas and test_img_shapes
# to avoid potential error
self.temp_img_metas = []
self.test_img_shapes = []
self.test_img_metas = []
if self.get_supercategory:
annotations = self.add_supercategory_ann(annotations)
results = self.process_results(results, annotations,
image_level_annotations)
if use_group_of:
assert ioa_thr is not None, \
'ioa_thr must have value when using group_of in evaluation.'
eval_results = OrderedDict()
iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr
ioa_thrs = [ioa_thr] if isinstance(ioa_thr, float) or ioa_thr is None \
else ioa_thr
# get dataset type
if len(self.CLASSES) == 500:
ds_name = 'oid_challenge'
elif len(self.CLASSES) == 601:
ds_name = 'oid_v6'
else:
ds_name = self.CLASSES
warnings.warn('Cannot infer dataset type from the length of the '
'classes. Set `oid_v6` as dataset type.')
if metric == 'mAP':
assert isinstance(iou_thrs, list) and isinstance(ioa_thrs, list)
assert len(ioa_thrs) == len(iou_thrs)
mean_aps = []
for iou_thr, ioa_thr in zip(iou_thrs, ioa_thrs):
print_log(f'\n{"-" * 15}iou_thr, ioa_thr: {iou_thr}, {ioa_thr}'
f'{"-" * 15}')
mean_ap, _ = eval_map(
results,
annotations,
scale_ranges=scale_ranges,
iou_thr=iou_thr,
ioa_thr=ioa_thr,
dataset=ds_name,
logger=logger,
use_group_of=use_group_of)
mean_aps.append(mean_ap)
eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
return eval_results
@DATASETS.register_module()
class OpenImagesChallengeDataset(OpenImagesDataset):
"""Open Images Challenge dataset for detection."""
def __init__(self, ann_file, **kwargs):
assert ann_file.endswith('txt')
super(OpenImagesChallengeDataset, self).__init__(
ann_file=ann_file, **kwargs)
def get_classes_from_csv(self, label_file):
"""Get classes name from file.
Args:
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
Returns:
list: Class name of OpenImages.
"""
label_list = []
id_list = []
with open(label_file, 'r') as f:
reader = csv.reader(f)
for line in reader:
label_name = line[0]
label_id = int(line[2])
label_list.append(line[1])
id_list.append(label_id)
self.index_dict[label_name] = label_id - 1
indexes = np.argsort(id_list)
classes_names = []
for index in indexes:
classes_names.append(label_list[index])
return classes_names
def load_annotations(self, ann_file):
"""Load annotation from annotation file."""
with open(ann_file) as f:
lines = f.readlines()
i = 0
ann_infos = []
while i < len(lines):
bboxes = []
labels = []
is_group_ofs = []
filename = lines[i].rstrip()
i += 2
img_gt_size = int(lines[i])
i += 1
for j in range(img_gt_size):
sp = lines[i + j].split()
bboxes.append(
[float(sp[1]),
float(sp[2]),
float(sp[3]),
float(sp[4])])
labels.append(int(sp[0]) - 1) # labels begin from 1
is_group_ofs.append(True if int(sp[5]) == 1 else False)
i += img_gt_size
gt_bboxes = np.array(bboxes, dtype=np.float32)
gt_labels = np.array(labels, dtype=np.int64)
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
gt_is_group_ofs = np.array(is_group_ofs, dtype=bool)
img_info = dict(filename=filename)
ann_info = dict(
bboxes=gt_bboxes,
labels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
gt_is_group_ofs=gt_is_group_ofs)
ann_infos.append(dict(img_info=img_info, ann_info=ann_info))
return ann_infos
def prepare_train_img(self, idx):
"""Get training data and annotations after pipeline."""
ann_info = self.data_infos[idx]
results = dict(
img_info=ann_info['img_info'],
ann_info=ann_info['ann_info'],
)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
return self.pipeline(results)
def prepare_test_img(self, idx):
"""Get testing data after pipeline."""
ann_info = self.data_infos[idx]
results = dict(img_info=ann_info['img_info'])
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
results = self.pipeline(results)
if self.get_metas and self.load_from_pipeline:
self.get_meta_from_pipeline(results)
return results
def get_relation_matrix(self, hierarchy_file):
"""Get hierarchy for classes.
Args:
hierarchy_file (str): File path to the hierarchy for classes.
Returns:
ndarray: The matrix of the corresponding
relationship between the parent class and the child class,
of shape (class_num, class_num).
"""
class_label_tree = np.load(hierarchy_file, allow_pickle=True)
return class_label_tree[1:, 1:]
def get_ann_info(self, idx):
"""Get OpenImages annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
# avoid some potential error
data_infos = copy.deepcopy(self.data_infos[idx]['ann_info'])
return data_infos
def load_image_label_from_csv(self, image_level_ann_file):
"""Load image level annotations from csv style ann_file.
Args:
image_level_ann_file (str): CSV style image level annotation
file path.
Returns:
defaultdict[list[dict]]: Annotations where item of the defaultdict
indicates an image, each of which has (n) dicts.
Keys of dicts are:
- `image_level_label` (int): of shape 1.
- `confidence` (float): of shape 1.
"""
item_lists = defaultdict(list)
with open(image_level_ann_file, 'r') as f:
reader = csv.reader(f)
i = -1
for line in reader:
i += 1
if i == 0:
continue
else:
img_id = line[0]
label_id = line[1]
assert label_id in self.index_dict
image_level_label = int(self.index_dict[label_id])
confidence = float(line[2])
item_lists[img_id].append(
dict(
image_level_label=image_level_label,
confidence=confidence))
return item_lists
|