File size: 35,084 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import csv
import json
import os.path as osp
import warnings
from collections import OrderedDict, defaultdict

import mmcv
import numpy as np
import torch.distributed as dist
from mmcv.runner import get_dist_info
from mmcv.utils import print_log

from mmdet.core import eval_map
from .builder import DATASETS
from .custom import CustomDataset


@DATASETS.register_module()
class OpenImagesDataset(CustomDataset):
    """Open Images dataset for detection.

    Args:
        ann_file (str): Annotation file path.
        label_file (str): File path of the label description file that
            maps the classes names in MID format to their short
            descriptions.
        image_level_ann_file (str): Image level annotation, which is used
            in evaluation.
        get_supercategory (bool): Whether to get parent class of the
            current class. Default: True.
        hierarchy_file (str): The file path of the class hierarchy.
            Default: None.
        get_metas (bool): Whether to get image metas in testing or
            validation time. This should be `True` during evaluation.
            Default: True. The OpenImages annotations do not have image
            metas (width and height of the image), which will be used
            during evaluation. We provide two ways to get image metas
            in `OpenImagesDataset`:

            - 1. `load from file`: Load image metas from pkl file, which
              is suggested to use. We provided a script to get image metas:
              `tools/misc/get_image_metas.py`, which need to run
              this script before training/testing. Please refer to
              `config/openimages/README.md` for more details.

            - 2. `load from pipeline`, which will get image metas during
              test time. However, this may reduce the inference speed,
              especially when using distribution.

        load_from_file (bool): Whether to get image metas from pkl file.
        meta_file (str): File path to get image metas.
        filter_labels (bool): Whether filter unannotated classes.
            Default: True.
        load_image_level_labels (bool): Whether load and consider image
            level labels during evaluation. Default: True.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmcv.fileio.FileClient` for details.
            Defaults to ``dict(backend='disk')``.
    """

    def __init__(self,
                 ann_file,
                 label_file='',
                 image_level_ann_file='',
                 get_supercategory=True,
                 hierarchy_file=None,
                 get_metas=True,
                 load_from_file=True,
                 meta_file='',
                 filter_labels=True,
                 load_image_level_labels=True,
                 file_client_args=dict(backend='disk'),
                 **kwargs):
        # may get error if use other file_client
        self.file_client_args = file_client_args

        self.cat2label = defaultdict(str)
        self.index_dict = {}

        # Although it will init file_client in `CustomDataset`,
        # it needs to be init here.
        file_client = mmcv.FileClient(**file_client_args)
        # need get `index_dict` before load annotations
        assert label_file.endswith('csv')
        if hasattr(file_client, 'get_local_path'):
            with file_client.get_local_path(label_file) as local_path:
                class_names = self.get_classes_from_csv(local_path)
        else:
            class_names = self.get_classes_from_csv(label_file)
        super(OpenImagesDataset, self).__init__(
            ann_file=ann_file, file_client_args=file_client_args, **kwargs)
        self.CLASSES = class_names
        self.image_level_ann_file = image_level_ann_file
        self.load_image_level_labels = load_image_level_labels
        if get_supercategory is True:
            assert hierarchy_file is not None
            if self.__class__.__name__ == 'OpenImagesDataset':
                assert hierarchy_file.endswith('json')
            elif self.__class__.__name__ == 'OpenImagesChallengeDataset':
                assert hierarchy_file.endswith('np')
            else:
                raise NotImplementedError
            if hasattr(self.file_client, 'get_local_path'):
                with self.file_client.get_local_path(
                        hierarchy_file) as local_path:
                    self.class_label_tree = self.get_relation_matrix(
                        local_path)
            else:
                self.class_label_tree = self.get_relation_matrix(
                    hierarchy_file)
        self.get_supercategory = get_supercategory
        self.get_metas = get_metas
        self.load_from_file = load_from_file
        self.meta_file = meta_file
        if self.data_root is not None:
            if not osp.isabs(self.meta_file):
                self.meta_file = osp.join(self.data_root, self.meta_file)
        self.filter_labels = filter_labels
        self.rank, self.world_size = get_dist_info()
        self.temp_img_metas = []
        self.test_img_metas = []
        self.test_img_shapes = []
        self.load_from_pipeline = False if load_from_file else True

    def get_classes_from_csv(self, label_file):
        """Get classes name from file.

        Args:
            label_file (str): File path of the label description file that
                maps the classes names in MID format to their short
                descriptions.

        Returns:
            list[str]: Class name of OpenImages.
        """

        index_list = []
        classes_names = []
        with open(label_file, 'r') as f:
            reader = csv.reader(f)
            for line in reader:
                self.cat2label[line[0]] = line[1]
                classes_names.append(line[1])
                index_list.append(line[0])
        self.index_dict = {index: i for i, index in enumerate(index_list)}
        return classes_names

    def load_annotations(self, ann_file):
        """Load annotation from annotation file.

        Special described `self.data_infos` (defaultdict[list[dict]])
        in this function: Annotations where item of the defaultdict
        indicates an image, each of which has (n) dicts. Keys of dicts are:

            - `bbox` (list): coordinates of the box, in normalized image
              coordinates, of shape 4.
            - `label` (int): the label id.
            - `is_group_of` (bool):  Indicates that the box spans a group
              of objects (e.g., a bed of flowers or a crowd of people).
            - `is_occluded` (bool): Indicates that the object is occluded
              by another object in the image.
            - `is_truncated` (bool): Indicates that the object extends
              beyond the boundary of the image.
            - `is_depiction` (bool): Indicates that the object is a
              depiction.
            - `is_inside` (bool): Indicates a picture taken from the
              inside of the object.

        Args:
            ann_file (str): CSV style annotation file path.

        Returns:
            list[dict]:  Data infos where each item of the list
            indicates an image. Keys of annotations are:

                - `img_id` (str): Image name.
                - `filename` (str): Image name with suffix.
        """
        self.ann_infos = defaultdict(list)
        data_infos = []
        cp_filename = None
        with open(ann_file, 'r') as f:
            reader = csv.reader(f)
            for i, line in enumerate(reader):
                if i == 0:
                    continue
                img_id = line[0]
                filename = f'{img_id}.jpg'
                label_id = line[2]
                assert label_id in self.index_dict
                label = int(self.index_dict[label_id])
                bbox = [
                    float(line[4]),  # xmin
                    float(line[6]),  # ymin
                    float(line[5]),  # xmax
                    float(line[7])  # ymax
                ]
                is_occluded = True if int(line[8]) == 1 else False
                is_truncated = True if int(line[9]) == 1 else False
                is_group_of = True if int(line[10]) == 1 else False
                is_depiction = True if int(line[11]) == 1 else False
                is_inside = True if int(line[12]) == 1 else False

                self.ann_infos[img_id].append(
                    dict(
                        bbox=bbox,
                        label=label,
                        is_occluded=is_occluded,
                        is_truncated=is_truncated,
                        is_group_of=is_group_of,
                        is_depiction=is_depiction,
                        is_inside=is_inside))
                if filename != cp_filename:
                    data_infos.append(dict(img_id=img_id, filename=filename))
                    cp_filename = filename
        return data_infos

    def get_ann_info(self, idx):
        """Get OpenImages annotation by index.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Annotation info of specified index.
        """
        img_id = self.data_infos[idx]['img_id']
        bboxes = []
        labels = []
        bboxes_ignore = []
        labels_ignore = []
        is_occludeds = []
        is_truncateds = []
        is_group_ofs = []
        is_depictions = []
        is_insides = []
        for obj in self.ann_infos[img_id]:
            label = int(obj['label'])
            bbox = [
                float(obj['bbox'][0]),
                float(obj['bbox'][1]),
                float(obj['bbox'][2]),
                float(obj['bbox'][3])
            ]
            bboxes.append(bbox)
            labels.append(label)

            # Other parameters
            is_occludeds.append(obj['is_occluded'])
            is_truncateds.append(obj['is_truncated'])
            is_group_ofs.append(obj['is_group_of'])
            is_depictions.append(obj['is_depiction'])
            is_insides.append(obj['is_inside'])
        if not bboxes:
            bboxes = np.zeros((0, 4))
            labels = np.zeros((0, ))
        else:
            bboxes = np.array(bboxes)
            labels = np.array(labels)
        if not bboxes_ignore:
            bboxes_ignore = np.zeros((0, 4))
            labels_ignore = np.zeros((0, ))
        else:
            bboxes_ignore = np.array(bboxes_ignore)
            labels_ignore = np.array(labels_ignore)

        assert len(is_group_ofs) == len(labels) == len(bboxes)
        gt_is_group_ofs = np.array(is_group_ofs, dtype=bool)

        # These parameters is not used yet.
        is_occludeds = np.array(is_occludeds, dtype=bool)
        is_truncateds = np.array(is_truncateds, dtype=bool)
        is_depictions = np.array(is_depictions, dtype=bool)
        is_insides = np.array(is_insides, dtype=bool)

        ann = dict(
            bboxes=bboxes.astype(np.float32),
            labels=labels.astype(np.int64),
            bboxes_ignore=bboxes_ignore.astype(np.float32),
            labels_ignore=labels_ignore.astype(np.int64),
            gt_is_group_ofs=gt_is_group_ofs,
            is_occludeds=is_occludeds,
            is_truncateds=is_truncateds,
            is_depictions=is_depictions,
            is_insides=is_insides)

        return ann

    def get_meta_from_file(self, meta_file=''):
        """Get image metas from pkl file."""
        metas = mmcv.load(
            meta_file,
            file_format='pkl',
            file_client_args=self.file_client_args)
        assert len(metas) == len(self)
        for i in range(len(metas)):
            file_name = osp.split(metas[i]['filename'])[-1]
            img_info = self.data_infos[i].get('img_info', None)
            if img_info is not None:
                assert file_name == osp.split(img_info['filename'])[-1]
            else:
                assert file_name == self.data_infos[i]['filename']
            hw = metas[i]['ori_shape'][:2]
            self.test_img_shapes.append(hw)

    def get_meta_from_pipeline(self, results):
        """Get image metas from pipeline."""
        self.temp_img_metas.extend(results['img_metas'])
        if dist.is_available() and self.world_size > 1:
            from mmdet.apis.test import collect_results_cpu

            self.test_img_metas = collect_results_cpu(self.temp_img_metas,
                                                      len(self))
        else:
            self.test_img_metas = self.temp_img_metas

    def get_img_shape(self, metas):
        """Set images original shape into data_infos."""
        assert len(metas) == len(self)
        for i in range(len(metas)):
            file_name = osp.split(metas[i].data['ori_filename'])[-1]
            img_info = self.data_infos[i].get('img_info', None)
            if img_info is not None:
                assert file_name == osp.split(img_info['filename'])[-1]
            else:
                assert file_name == self.data_infos[i]['filename']
            hw = metas[i].data['ori_shape'][:2]
            self.test_img_shapes.append(hw)

    def prepare_test_img(self, idx):
        """Get testing data after pipeline."""
        img_info = self.data_infos[idx]
        results = dict(img_info=img_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        results = self.pipeline(results)
        if self.get_metas and self.load_from_pipeline:
            self.get_meta_from_pipeline(results)
        return results

    def _filter_imgs(self, min_size=32):
        """Filter images too small."""
        if self.filter_empty_gt:
            warnings.warn('OpenImageDatasets does not support '
                          'filtering empty gt images.')
        valid_inds = [i for i in range(len(self))]
        return valid_inds

    def _set_group_flag(self):
        """Set flag according to image aspect ratio."""
        self.flag = np.zeros(len(self), dtype=np.uint8)
        # TODO: set flag without width and height

    def get_relation_matrix(self, hierarchy_file):
        """Get hierarchy for classes.

        Args:
            hierarchy_file (sty): File path to the hierarchy for classes.

        Returns:
            ndarray: The matrix of the corresponding relationship between
            the parent class and the child class, of shape
            (class_num, class_num).
        """

        if self.data_root is not None:
            if not osp.isabs(hierarchy_file):
                hierarchy_file = osp.join(self.data_root, hierarchy_file)
        with open(hierarchy_file, 'r') as f:
            hierarchy = json.load(f)
        class_num = len(self.CLASSES)
        class_label_tree = np.eye(class_num, class_num)
        class_label_tree = self._convert_hierarchy_tree(
            hierarchy, class_label_tree)
        return class_label_tree

    def _convert_hierarchy_tree(self,
                                hierarchy_map,
                                class_label_tree,
                                parents=[],
                                get_all_parents=True):
        """Get matrix of the corresponding relationship between the parent
        class and the child class.

        Args:
            hierarchy_map (dict): Including label name and corresponding
                subcategory. Keys of dicts are:

                - `LabeName` (str): Name of the label.
                - `Subcategory` (dict | list): Corresponding subcategory(ies).
            class_label_tree (ndarray): The matrix of the corresponding
                relationship between the parent class and the child class,
                of shape (class_num, class_num).
            parents (list): Corresponding parent class.
            get_all_parents (bool): Whether get all parent names.
                Default: True

        Returns:
            ndarray: The matrix of the corresponding relationship between
            the parent class and the child class, of shape
            (class_num, class_num).
        """

        if 'Subcategory' in hierarchy_map:
            for node in hierarchy_map['Subcategory']:
                if 'LabelName' in node:
                    children_name = node['LabelName']
                    children_index = self.index_dict[children_name]
                    children = [children_index]
                else:
                    continue
                if len(parents) > 0:
                    for parent_index in parents:
                        if get_all_parents:
                            children.append(parent_index)
                        class_label_tree[children_index, parent_index] = 1

                class_label_tree = self._convert_hierarchy_tree(
                    node, class_label_tree, parents=children)

        return class_label_tree

    def add_supercategory_ann(self, annotations):
        """Add parent classes of the corresponding class of the ground truth
        bboxes."""
        for i, ann in enumerate(annotations):
            assert len(ann['labels']) == len(ann['bboxes']) == \
                   len(ann['gt_is_group_ofs'])
            gt_bboxes = []
            gt_is_group_ofs = []
            gt_labels = []
            for j in range(len(ann['labels'])):
                label = ann['labels'][j]
                bbox = ann['bboxes'][j]
                is_group = ann['gt_is_group_ofs'][j]
                label = np.where(self.class_label_tree[label])[0]
                if len(label) > 1:
                    for k in range(len(label)):
                        gt_bboxes.append(bbox)
                        gt_is_group_ofs.append(is_group)
                        gt_labels.append(label[k])
                else:
                    gt_bboxes.append(bbox)
                    gt_is_group_ofs.append(is_group)
                    gt_labels.append(label[0])
            annotations[i] = dict(
                bboxes=np.array(gt_bboxes).astype(np.float32),
                labels=np.array(gt_labels).astype(np.int64),
                bboxes_ignore=ann['bboxes_ignore'],
                gt_is_group_ofs=np.array(gt_is_group_ofs).astype(bool))

        return annotations

    def process_results(self, det_results, annotations,
                        image_level_annotations):
        """Process results of the corresponding class of the detection bboxes.

        Note: It will choose to do the following two processing according to
        the parameters:

        1. Whether to add parent classes of the corresponding class of the
        detection bboxes.

        2. Whether to ignore the classes that unannotated on that image.
        """
        if image_level_annotations is not None:
            assert len(annotations) == \
                   len(image_level_annotations) == \
                   len(det_results)
        else:
            assert len(annotations) == len(det_results)
        for i in range(len(det_results)):
            results = copy.deepcopy(det_results[i])
            valid_classes = np.where(
                np.array([[bbox.shape[0]] for bbox in det_results[i]]) != 0)[0]
            if image_level_annotations is not None:
                labels = annotations[i]['labels']
                image_level_labels = \
                    image_level_annotations[i]['image_level_labels']
                allowed_labeles = np.unique(
                    np.append(labels, image_level_labels))
            else:
                allowed_labeles = np.unique(annotations[i]['labels'])

            for valid_class in valid_classes:
                det_cls = np.where(self.class_label_tree[valid_class])[0]
                for index in det_cls:
                    if index in allowed_labeles and \
                            index != valid_class and \
                            self.get_supercategory:
                        det_results[i][index] = \
                            np.concatenate((det_results[i][index],
                                            results[valid_class]))
                    elif index not in allowed_labeles and self.filter_labels:
                        # Remove useless parts
                        det_results[i][index] = np.empty(
                            (0, 5)).astype(np.float32)
        return det_results

    def load_image_label_from_csv(self, image_level_ann_file):
        """Load image level annotations from csv style ann_file.

        Args:
            image_level_ann_file (str): CSV style image level annotation
                file path.

        Returns:
            defaultdict[list[dict]]: Annotations where item of the defaultdict
            indicates an image, each of which has (n) dicts.
            Keys of dicts are:

                - `image_level_label` (int): Label id.
                - `confidence` (float): Labels that are human-verified to be
                  present in an image have confidence = 1 (positive labels).
                  Labels that are human-verified to be absent from an image
                  have confidence = 0 (negative labels). Machine-generated
                  labels have fractional confidences, generally >= 0.5.
                  The higher the confidence, the smaller the chance for
                  the label to be a false positive.
        """

        item_lists = defaultdict(list)
        with open(image_level_ann_file, 'r') as f:
            reader = csv.reader(f)
            for i, line in enumerate(reader):
                if i == 0:
                    continue
                img_id = line[0]
                item_lists[img_id].append(
                    dict(
                        image_level_label=int(self.index_dict[line[2]]),
                        confidence=float(line[3])))
        return item_lists

    def get_image_level_ann(self, image_level_ann_file):
        """Get OpenImages annotation by index.

        Args:
            image_level_ann_file (str): CSV style image level annotation
                file path.

        Returns:
            dict: Annotation info of specified index.
        """

        if hasattr(self.file_client, 'get_local_path'):
            with self.file_client.get_local_path(image_level_ann_file) \
                    as local_path:
                item_lists = self.load_image_label_from_csv(local_path)
        else:
            item_lists = self.load_image_label_from_csv(image_level_ann_file)
        image_level_annotations = []
        for i in range(len(self)):
            img_info = self.data_infos[i].get('img_info', None)
            if img_info is not None:
                # for Open Images Challenges
                img_id = osp.split(img_info['filename'])[-1][:-4]
            else:
                # for Open Images v6
                img_id = self.data_infos[i]['img_id']
            item_list = item_lists.get(img_id, None)
            if item_list is not None:
                image_level_labels = []
                confidences = []
                for obj in item_list:
                    image_level_label = int(obj['image_level_label'])
                    confidence = float(obj['confidence'])

                    image_level_labels.append(image_level_label)
                    confidences.append(confidence)

                if not image_level_labels:
                    image_level_labels = np.zeros((0, ))
                    confidences = np.zeros((0, ))
                else:
                    image_level_labels = np.array(image_level_labels)
                    confidences = np.array(confidences)
            else:
                image_level_labels = np.zeros((0, ))
                confidences = np.zeros((0, ))
            ann = dict(
                image_level_labels=image_level_labels.astype(np.int64),
                confidences=confidences.astype(np.float32))
            image_level_annotations.append(ann)

        return image_level_annotations

    def denormalize_gt_bboxes(self, annotations):
        """Convert ground truth bboxes from relative position to absolute
        position.

        Only used in evaluating time.
        """
        assert len(self.test_img_shapes) == len(annotations)
        for i in range(len(annotations)):
            h, w = self.test_img_shapes[i]
            annotations[i]['bboxes'][:, 0::2] *= w
            annotations[i]['bboxes'][:, 1::2] *= h
        return annotations

    def get_cat_ids(self, idx):
        """Get category ids by index.

        Args:
            idx (int): Index of data.

        Returns:
            list[int]: All categories in the image of specified index.
        """
        return self.get_ann_info(idx)['labels'].astype(np.int).tolist()

    def evaluate(self,
                 results,
                 metric='mAP',
                 logger=None,
                 iou_thr=0.5,
                 ioa_thr=0.5,
                 scale_ranges=None,
                 denorm_gt_bbox=True,
                 use_group_of=True):
        """Evaluate in OpenImages.

        Args:
            results (list[list | tuple]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated. Option is
                 'mAP'. Default: 'mAP'.
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Default: None.
            iou_thr (float | list[float]): IoU threshold. Default: 0.5.
            ioa_thr (float | list[float]): IoA threshold. Default: 0.5.
            scale_ranges (list[tuple], optional): Scale ranges for evaluating
                mAP. If not specified, all bounding boxes would be included in
                evaluation. Default: None
            denorm_gt_bbox (bool): Whether to denorm ground truth bboxes from
                relative position to absolute position. Default: True
            use_group_of (bool): Whether consider group of groud truth bboxes
                during evaluating. Default: True.

        Returns:
            dict[str, float]: AP metrics.
        """

        if not isinstance(metric, str):
            assert len(metric) == 1
            metric = metric[0]
        allowed_metrics = ['mAP']
        if metric not in allowed_metrics:
            raise KeyError(f'metric {metric} is not supported')
        annotations = [self.get_ann_info(i) for i in range(len(self))]

        if self.load_image_level_labels:
            image_level_annotations = \
                self.get_image_level_ann(self.image_level_ann_file)
        else:
            image_level_annotations = None

        # load metas from file
        if self.get_metas and self.load_from_file:
            assert self.meta_file.endswith(
                'pkl'), 'File name must be pkl suffix'
            self.get_meta_from_file(self.meta_file)
        # load metas from pipeline
        else:
            self.get_img_shape(self.test_img_metas)

        if len(self.test_img_shapes) > len(self):
            self.test_img_shapes = self.test_img_shapes[:len(self)]

        if denorm_gt_bbox:
            annotations = self.denormalize_gt_bboxes(annotations)

        # Reset test_image_metas, temp_image_metas and test_img_shapes
        # to avoid potential error
        self.temp_img_metas = []
        self.test_img_shapes = []
        self.test_img_metas = []
        if self.get_supercategory:
            annotations = self.add_supercategory_ann(annotations)

        results = self.process_results(results, annotations,
                                       image_level_annotations)
        if use_group_of:
            assert ioa_thr is not None, \
                'ioa_thr must have value when using group_of in evaluation.'

        eval_results = OrderedDict()
        iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr
        ioa_thrs = [ioa_thr] if isinstance(ioa_thr, float) or ioa_thr is None \
            else ioa_thr

        # get dataset type
        if len(self.CLASSES) == 500:
            ds_name = 'oid_challenge'
        elif len(self.CLASSES) == 601:
            ds_name = 'oid_v6'
        else:
            ds_name = self.CLASSES
            warnings.warn('Cannot infer dataset type from the length of the '
                          'classes. Set `oid_v6` as dataset type.')

        if metric == 'mAP':
            assert isinstance(iou_thrs, list) and isinstance(ioa_thrs, list)
            assert len(ioa_thrs) == len(iou_thrs)
            mean_aps = []
            for iou_thr, ioa_thr in zip(iou_thrs, ioa_thrs):
                print_log(f'\n{"-" * 15}iou_thr, ioa_thr: {iou_thr}, {ioa_thr}'
                          f'{"-" * 15}')
                mean_ap, _ = eval_map(
                    results,
                    annotations,
                    scale_ranges=scale_ranges,
                    iou_thr=iou_thr,
                    ioa_thr=ioa_thr,
                    dataset=ds_name,
                    logger=logger,
                    use_group_of=use_group_of)
                mean_aps.append(mean_ap)
                eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
            eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
        return eval_results


@DATASETS.register_module()
class OpenImagesChallengeDataset(OpenImagesDataset):
    """Open Images Challenge dataset for detection."""

    def __init__(self, ann_file, **kwargs):
        assert ann_file.endswith('txt')
        super(OpenImagesChallengeDataset, self).__init__(
            ann_file=ann_file, **kwargs)

    def get_classes_from_csv(self, label_file):
        """Get classes name from file.

        Args:
            label_file (str): File path of the label description file that
                maps the classes names in MID format to their short
                descriptions.

        Returns:
            list: Class name of OpenImages.
        """

        label_list = []
        id_list = []
        with open(label_file, 'r') as f:
            reader = csv.reader(f)
            for line in reader:
                label_name = line[0]
                label_id = int(line[2])

                label_list.append(line[1])
                id_list.append(label_id)
                self.index_dict[label_name] = label_id - 1

        indexes = np.argsort(id_list)
        classes_names = []
        for index in indexes:
            classes_names.append(label_list[index])
        return classes_names

    def load_annotations(self, ann_file):
        """Load annotation from annotation file."""
        with open(ann_file) as f:
            lines = f.readlines()
        i = 0
        ann_infos = []
        while i < len(lines):
            bboxes = []
            labels = []
            is_group_ofs = []
            filename = lines[i].rstrip()
            i += 2
            img_gt_size = int(lines[i])
            i += 1
            for j in range(img_gt_size):
                sp = lines[i + j].split()
                bboxes.append(
                    [float(sp[1]),
                     float(sp[2]),
                     float(sp[3]),
                     float(sp[4])])
                labels.append(int(sp[0]) - 1)  # labels begin from 1
                is_group_ofs.append(True if int(sp[5]) == 1 else False)
            i += img_gt_size

            gt_bboxes = np.array(bboxes, dtype=np.float32)
            gt_labels = np.array(labels, dtype=np.int64)
            gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
            gt_is_group_ofs = np.array(is_group_ofs, dtype=bool)

            img_info = dict(filename=filename)
            ann_info = dict(
                bboxes=gt_bboxes,
                labels=gt_labels,
                bboxes_ignore=gt_bboxes_ignore,
                gt_is_group_ofs=gt_is_group_ofs)
            ann_infos.append(dict(img_info=img_info, ann_info=ann_info))

        return ann_infos

    def prepare_train_img(self, idx):
        """Get training data and annotations after pipeline."""
        ann_info = self.data_infos[idx]
        results = dict(
            img_info=ann_info['img_info'],
            ann_info=ann_info['ann_info'],
        )
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def prepare_test_img(self, idx):
        """Get testing data after pipeline."""
        ann_info = self.data_infos[idx]
        results = dict(img_info=ann_info['img_info'])
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)

        results = self.pipeline(results)
        if self.get_metas and self.load_from_pipeline:
            self.get_meta_from_pipeline(results)
        return results

    def get_relation_matrix(self, hierarchy_file):
        """Get hierarchy for classes.

        Args:
            hierarchy_file (str): File path to the hierarchy for classes.

        Returns:
            ndarray: The matrix of the corresponding
            relationship between the parent class and the child class,
            of shape (class_num, class_num).
        """
        class_label_tree = np.load(hierarchy_file, allow_pickle=True)
        return class_label_tree[1:, 1:]

    def get_ann_info(self, idx):
        """Get OpenImages annotation by index.

        Args:
            idx (int): Index of data.

        Returns:
            dict: Annotation info of specified index.
        """
        # avoid some potential error
        data_infos = copy.deepcopy(self.data_infos[idx]['ann_info'])
        return data_infos

    def load_image_label_from_csv(self, image_level_ann_file):
        """Load image level annotations from csv style ann_file.

        Args:
            image_level_ann_file (str): CSV style image level annotation
                file path.

        Returns:
            defaultdict[list[dict]]: Annotations where item of the defaultdict
            indicates an image, each of which has (n) dicts.
            Keys of dicts are:

                - `image_level_label` (int): of shape 1.
                - `confidence` (float): of shape 1.
        """

        item_lists = defaultdict(list)
        with open(image_level_ann_file, 'r') as f:
            reader = csv.reader(f)
            i = -1
            for line in reader:
                i += 1
                if i == 0:
                    continue
                else:
                    img_id = line[0]
                    label_id = line[1]
                    assert label_id in self.index_dict
                    image_level_label = int(self.index_dict[label_id])
                    confidence = float(line[2])
                    item_lists[img_id].append(
                        dict(
                            image_level_label=image_level_label,
                            confidence=confidence))
        return item_lists