File size: 20,991 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright (c) OpenMMLab. All rights reserved.
import math

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule,
                      bias_init_with_prob)
from mmcv.ops.nms import batched_nms
from mmcv.runner import force_fp32

from mmdet.core import (MlvlPointGenerator, bbox_xyxy_to_cxcywh,
                        build_assigner, build_sampler, multi_apply,
                        reduce_mean)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


@HEADS.register_module()
class YOLOXHead(BaseDenseHead, BBoxTestMixin):
    """YOLOXHead head used in `YOLOX <https://arxiv.org/abs/2107.08430>`_.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels in stacking convs.
            Default: 256
        stacked_convs (int): Number of stacking convs of the head.
            Default: 2.
        strides (tuple): Downsample factor of each feature map.
        use_depthwise (bool): Whether to depthwise separable convolution in
            blocks. Default: False
        dcn_on_last_conv (bool): If true, use dcn in the last layer of
            towers. Default: False.
        conv_bias (bool | str): If specified as `auto`, it will be decided by
            the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
            None, otherwise False. Default: "auto".
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (dict): Config dict for activation layer. Default: None.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_obj (dict): Config of objectness loss.
        loss_l1 (dict): Config of L1 loss.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 feat_channels=256,
                 stacked_convs=2,
                 strides=[8, 16, 32],
                 use_depthwise=False,
                 dcn_on_last_conv=False,
                 conv_bias='auto',
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
                 act_cfg=dict(type='Swish'),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='sum',
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='IoULoss',
                     mode='square',
                     eps=1e-16,
                     reduction='sum',
                     loss_weight=5.0),
                 loss_obj=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='sum',
                     loss_weight=1.0),
                 loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0),
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=dict(
                     type='Kaiming',
                     layer='Conv2d',
                     a=math.sqrt(5),
                     distribution='uniform',
                     mode='fan_in',
                     nonlinearity='leaky_relu')):

        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.cls_out_channels = num_classes
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.stacked_convs = stacked_convs
        self.strides = strides
        self.use_depthwise = use_depthwise
        self.dcn_on_last_conv = dcn_on_last_conv
        assert conv_bias == 'auto' or isinstance(conv_bias, bool)
        self.conv_bias = conv_bias
        self.use_sigmoid_cls = True

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_obj = build_loss(loss_obj)

        self.use_l1 = False  # This flag will be modified by hooks.
        self.loss_l1 = build_loss(loss_l1)

        self.prior_generator = MlvlPointGenerator(strides, offset=0)

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg

        self.sampling = False
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # sampling=False so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)

        self.fp16_enabled = False
        self._init_layers()

    def _init_layers(self):
        self.multi_level_cls_convs = nn.ModuleList()
        self.multi_level_reg_convs = nn.ModuleList()
        self.multi_level_conv_cls = nn.ModuleList()
        self.multi_level_conv_reg = nn.ModuleList()
        self.multi_level_conv_obj = nn.ModuleList()
        for _ in self.strides:
            self.multi_level_cls_convs.append(self._build_stacked_convs())
            self.multi_level_reg_convs.append(self._build_stacked_convs())
            conv_cls, conv_reg, conv_obj = self._build_predictor()
            self.multi_level_conv_cls.append(conv_cls)
            self.multi_level_conv_reg.append(conv_reg)
            self.multi_level_conv_obj.append(conv_obj)

    def _build_stacked_convs(self):
        """Initialize conv layers of a single level head."""
        conv = DepthwiseSeparableConvModule \
            if self.use_depthwise else ConvModule
        stacked_convs = []
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            if self.dcn_on_last_conv and i == self.stacked_convs - 1:
                conv_cfg = dict(type='DCNv2')
            else:
                conv_cfg = self.conv_cfg
            stacked_convs.append(
                conv(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    bias=self.conv_bias))
        return nn.Sequential(*stacked_convs)

    def _build_predictor(self):
        """Initialize predictor layers of a single level head."""
        conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        conv_reg = nn.Conv2d(self.feat_channels, 4, 1)
        conv_obj = nn.Conv2d(self.feat_channels, 1, 1)
        return conv_cls, conv_reg, conv_obj

    def init_weights(self):
        super(YOLOXHead, self).init_weights()
        # Use prior in model initialization to improve stability
        bias_init = bias_init_with_prob(0.01)
        for conv_cls, conv_obj in zip(self.multi_level_conv_cls,
                                      self.multi_level_conv_obj):
            conv_cls.bias.data.fill_(bias_init)
            conv_obj.bias.data.fill_(bias_init)

    def forward_single(self, x, cls_convs, reg_convs, conv_cls, conv_reg,
                       conv_obj):
        """Forward feature of a single scale level."""

        cls_feat = cls_convs(x)
        reg_feat = reg_convs(x)

        cls_score = conv_cls(cls_feat)
        bbox_pred = conv_reg(reg_feat)
        objectness = conv_obj(reg_feat)

        return cls_score, bbox_pred, objectness

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            tuple[Tensor]: A tuple of multi-level predication map, each is a
                4D-tensor of shape (batch_size, 5+num_classes, height, width).
        """

        return multi_apply(self.forward_single, feats,
                           self.multi_level_cls_convs,
                           self.multi_level_reg_convs,
                           self.multi_level_conv_cls,
                           self.multi_level_conv_reg,
                           self.multi_level_conv_obj)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   objectnesses,
                   img_metas=None,
                   cfg=None,
                   rescale=False,
                   with_nms=True):
        """Transform network outputs of a batch into bbox results.
        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            img_metas (list[dict], Optional): Image meta info. Default None.
            cfg (mmcv.Config, Optional): Test / postprocessing configuration,
                if None, test_cfg would be used.  Default None.
            rescale (bool): If True, return boxes in original image space.
                Default False.
            with_nms (bool): If True, do nms before return boxes.
                Default True.
        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
        cfg = self.test_cfg if cfg is None else cfg
        scale_factors = np.array(
            [img_meta['scale_factor'] for img_meta in img_metas])

        num_imgs = len(img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
        flatten_priors = torch.cat(mlvl_priors)

        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        if rescale:
            flatten_bboxes[..., :4] /= flatten_bboxes.new_tensor(
                scale_factors).unsqueeze(1)

        result_list = []
        for img_id in range(len(img_metas)):
            cls_scores = flatten_cls_scores[img_id]
            score_factor = flatten_objectness[img_id]
            bboxes = flatten_bboxes[img_id]

            result_list.append(
                self._bboxes_nms(cls_scores, bboxes, score_factor, cfg))

        return result_list

    def _bbox_decode(self, priors, bbox_preds):
        xys = (bbox_preds[..., :2] * priors[:, 2:]) + priors[:, :2]
        whs = bbox_preds[..., 2:].exp() * priors[:, 2:]

        tl_x = (xys[..., 0] - whs[..., 0] / 2)
        tl_y = (xys[..., 1] - whs[..., 1] / 2)
        br_x = (xys[..., 0] + whs[..., 0] / 2)
        br_y = (xys[..., 1] + whs[..., 1] / 2)

        decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
        return decoded_bboxes

    def _bboxes_nms(self, cls_scores, bboxes, score_factor, cfg):
        max_scores, labels = torch.max(cls_scores, 1)
        valid_mask = score_factor * max_scores >= cfg.score_thr

        bboxes = bboxes[valid_mask]
        scores = max_scores[valid_mask] * score_factor[valid_mask]
        labels = labels[valid_mask]

        if labels.numel() == 0:
            return bboxes, labels
        else:
            dets, keep = batched_nms(bboxes, scores, labels, cfg.nms)
            return dets, labels[keep]

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             objectnesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.
        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
        """
        num_imgs = len(img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)

        flatten_cls_preds = [
            cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                 self.cls_out_channels)
            for cls_pred in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_objectness = [
            objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
            for objectness in objectnesses
        ]

        flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_objectness = torch.cat(flatten_objectness, dim=1)
        flatten_priors = torch.cat(mlvl_priors)
        flatten_bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds)

        (pos_masks, cls_targets, obj_targets, bbox_targets, l1_targets,
         num_fg_imgs) = multi_apply(
             self._get_target_single, flatten_cls_preds.detach(),
             flatten_objectness.detach(),
             flatten_priors.unsqueeze(0).repeat(num_imgs, 1, 1),
             flatten_bboxes.detach(), gt_bboxes, gt_labels)

        # The experimental results show that ‘reduce_mean’ can improve
        # performance on the COCO dataset.
        num_pos = torch.tensor(
            sum(num_fg_imgs),
            dtype=torch.float,
            device=flatten_cls_preds.device)
        num_total_samples = max(reduce_mean(num_pos), 1.0)

        pos_masks = torch.cat(pos_masks, 0)
        cls_targets = torch.cat(cls_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        bbox_targets = torch.cat(bbox_targets, 0)
        if self.use_l1:
            l1_targets = torch.cat(l1_targets, 0)

        loss_bbox = self.loss_bbox(
            flatten_bboxes.view(-1, 4)[pos_masks],
            bbox_targets) / num_total_samples
        loss_obj = self.loss_obj(flatten_objectness.view(-1, 1),
                                 obj_targets) / num_total_samples
        loss_cls = self.loss_cls(
            flatten_cls_preds.view(-1, self.num_classes)[pos_masks],
            cls_targets) / num_total_samples

        loss_dict = dict(
            loss_cls=loss_cls, loss_bbox=loss_bbox, loss_obj=loss_obj)

        if self.use_l1:
            loss_l1 = self.loss_l1(
                flatten_bbox_preds.view(-1, 4)[pos_masks],
                l1_targets) / num_total_samples
            loss_dict.update(loss_l1=loss_l1)

        return loss_dict

    @torch.no_grad()
    def _get_target_single(self, cls_preds, objectness, priors, decoded_bboxes,
                           gt_bboxes, gt_labels):
        """Compute classification, regression, and objectness targets for
        priors in a single image.
        Args:
            cls_preds (Tensor): Classification predictions of one image,
                a 2D-Tensor with shape [num_priors, num_classes]
            objectness (Tensor): Objectness predictions of one image,
                a 1D-Tensor with shape [num_priors]
            priors (Tensor): All priors of one image, a 2D-Tensor with shape
                [num_priors, 4] in [cx, xy, stride_w, stride_y] format.
            decoded_bboxes (Tensor): Decoded bboxes predictions of one image,
                a 2D-Tensor with shape [num_priors, 4] in [tl_x, tl_y,
                br_x, br_y] format.
            gt_bboxes (Tensor): Ground truth bboxes of one image, a 2D-Tensor
                with shape [num_gts, 4] in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth labels of one image, a Tensor
                with shape [num_gts].
        """

        num_priors = priors.size(0)
        num_gts = gt_labels.size(0)
        gt_bboxes = gt_bboxes.to(decoded_bboxes.dtype)
        # No target
        if num_gts == 0:
            cls_target = cls_preds.new_zeros((0, self.num_classes))
            bbox_target = cls_preds.new_zeros((0, 4))
            l1_target = cls_preds.new_zeros((0, 4))
            obj_target = cls_preds.new_zeros((num_priors, 1))
            foreground_mask = cls_preds.new_zeros(num_priors).bool()
            return (foreground_mask, cls_target, obj_target, bbox_target,
                    l1_target, 0)

        # YOLOX uses center priors with 0.5 offset to assign targets,
        # but use center priors without offset to regress bboxes.
        offset_priors = torch.cat(
            [priors[:, :2] + priors[:, 2:] * 0.5, priors[:, 2:]], dim=-1)

        assign_result = self.assigner.assign(
            cls_preds.sigmoid() * objectness.unsqueeze(1).sigmoid(),
            offset_priors, decoded_bboxes, gt_bboxes, gt_labels)

        sampling_result = self.sampler.sample(assign_result, priors, gt_bboxes)
        pos_inds = sampling_result.pos_inds
        num_pos_per_img = pos_inds.size(0)

        pos_ious = assign_result.max_overlaps[pos_inds]
        # IOU aware classification score
        cls_target = F.one_hot(sampling_result.pos_gt_labels,
                               self.num_classes) * pos_ious.unsqueeze(-1)
        obj_target = torch.zeros_like(objectness).unsqueeze(-1)
        obj_target[pos_inds] = 1
        bbox_target = sampling_result.pos_gt_bboxes
        l1_target = cls_preds.new_zeros((num_pos_per_img, 4))
        if self.use_l1:
            l1_target = self._get_l1_target(l1_target, bbox_target,
                                            priors[pos_inds])
        foreground_mask = torch.zeros_like(objectness).to(torch.bool)
        foreground_mask[pos_inds] = 1
        return (foreground_mask, cls_target, obj_target, bbox_target,
                l1_target, num_pos_per_img)

    def _get_l1_target(self, l1_target, gt_bboxes, priors, eps=1e-8):
        """Convert gt bboxes to center offset and log width height."""
        gt_cxcywh = bbox_xyxy_to_cxcywh(gt_bboxes)
        l1_target[:, :2] = (gt_cxcywh[:, :2] - priors[:, :2]) / priors[:, 2:]
        l1_target[:, 2:] = torch.log(gt_cxcywh[:, 2:] / priors[:, 2:] + eps)
        return l1_target