Spaces:
Runtime error
Runtime error
File size: 29,277 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import os
from collections import defaultdict
import mmcv
import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable
from mmdet.core import INSTANCE_OFFSET
from .api_wrappers import COCO, pq_compute_multi_core
from .builder import DATASETS
from .coco import CocoDataset
try:
import panopticapi
from panopticapi.evaluation import VOID
from panopticapi.utils import id2rgb
except ImportError:
panopticapi = None
id2rgb = None
VOID = None
__all__ = ['CocoPanopticDataset']
class COCOPanoptic(COCO):
"""This wrapper is for loading the panoptic style annotation file.
The format is shown in the CocoPanopticDataset class.
Args:
annotation_file (str): Path of annotation file.
"""
def __init__(self, annotation_file=None):
if panopticapi is None:
raise RuntimeError(
'panopticapi is not installed, please install it by: '
'pip install git+https://github.com/cocodataset/'
'panopticapi.git.')
super(COCOPanoptic, self).__init__(annotation_file)
def createIndex(self):
# create index
print('creating index...')
# anns stores 'segment_id -> annotation'
anns, cats, imgs = {}, {}, {}
img_to_anns, cat_to_imgs = defaultdict(list), defaultdict(list)
if 'annotations' in self.dataset:
for ann, img_info in zip(self.dataset['annotations'],
self.dataset['images']):
img_info['segm_file'] = ann['file_name']
for seg_ann in ann['segments_info']:
# to match with instance.json
seg_ann['image_id'] = ann['image_id']
seg_ann['height'] = img_info['height']
seg_ann['width'] = img_info['width']
img_to_anns[ann['image_id']].append(seg_ann)
# segment_id is not unique in coco dataset orz...
if seg_ann['id'] in anns.keys():
anns[seg_ann['id']].append(seg_ann)
else:
anns[seg_ann['id']] = [seg_ann]
if 'images' in self.dataset:
for img in self.dataset['images']:
imgs[img['id']] = img
if 'categories' in self.dataset:
for cat in self.dataset['categories']:
cats[cat['id']] = cat
if 'annotations' in self.dataset and 'categories' in self.dataset:
for ann in self.dataset['annotations']:
for seg_ann in ann['segments_info']:
cat_to_imgs[seg_ann['category_id']].append(ann['image_id'])
print('index created!')
self.anns = anns
self.imgToAnns = img_to_anns
self.catToImgs = cat_to_imgs
self.imgs = imgs
self.cats = cats
def load_anns(self, ids=[]):
"""Load anns with the specified ids.
self.anns is a list of annotation lists instead of a
list of annotations.
Args:
ids (int array): integer ids specifying anns
Returns:
anns (object array): loaded ann objects
"""
anns = []
if hasattr(ids, '__iter__') and hasattr(ids, '__len__'):
# self.anns is a list of annotation lists instead of
# a list of annotations
for id in ids:
anns += self.anns[id]
return anns
elif type(ids) == int:
return self.anns[ids]
@DATASETS.register_module()
class CocoPanopticDataset(CocoDataset):
"""Coco dataset for Panoptic segmentation.
The annotation format is shown as follows. The `ann` field is optional
for testing.
.. code-block:: none
[
{
'filename': f'{image_id:012}.png',
'image_id':9
'segments_info': {
[
{
'id': 8345037, (segment_id in panoptic png,
convert from rgb)
'category_id': 51,
'iscrowd': 0,
'bbox': (x1, y1, w, h),
'area': 24315,
'segmentation': list,(coded mask)
},
...
}
}
},
...
]
Args:
ann_file (str): Panoptic segmentation annotation file path.
pipeline (list[dict]): Processing pipeline.
ins_ann_file (str): Instance segmentation annotation file path.
Defaults to None.
classes (str | Sequence[str], optional): Specify classes to load.
If is None, ``cls.CLASSES`` will be used. Defaults to None.
data_root (str, optional): Data root for ``ann_file``,
``ins_ann_file`` ``img_prefix``, ``seg_prefix``, ``proposal_file``
if specified. Defaults to None.
img_prefix (str, optional): Prefix of path to images. Defaults to ''.
seg_prefix (str, optional): Prefix of path to segmentation files.
Defaults to None.
proposal_file (str, optional): Path to proposal file. Defaults to None.
test_mode (bool, optional): If set True, annotation will not be loaded.
Defaults to False.
filter_empty_gt (bool, optional): If set true, images without bounding
boxes of the dataset's classes will be filtered out. This option
only works when `test_mode=False`, i.e., we never filter images
during tests. Defaults to True.
file_client_args (:obj:`mmcv.ConfigDict` | dict): file client args.
Defaults to dict(backend='disk').
"""
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
' truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff',
'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light',
'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
'wall-wood', 'water-other', 'window-blind', 'window-other',
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
'cabinet-merged', 'table-merged', 'floor-other-merged',
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
'paper-merged', 'food-other-merged', 'building-other-merged',
'rock-merged', 'wall-other-merged', 'rug-merged'
]
THING_CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
STUFF_CLASSES = [
'banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain',
'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house',
'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
'wall-wood', 'water-other', 'window-blind', 'window-other',
'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
'cabinet-merged', 'table-merged', 'floor-other-merged',
'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
'paper-merged', 'food-other-merged', 'building-other-merged',
'rock-merged', 'wall-other-merged', 'rug-merged'
]
PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
(106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70),
(0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0),
(175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255),
(0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157),
(110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118),
(255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182),
(0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255),
(78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255),
(134, 134, 103), (145, 148, 174), (255, 208, 186),
(197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255),
(151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),
(166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149),
(179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205),
(147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0),
(119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88),
(95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118),
(219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15),
(127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0),
(95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122),
(191, 162, 208), (255, 255, 128), (147, 211, 203),
(150, 100, 100), (168, 171, 172), (146, 112, 198),
(210, 170, 100), (92, 136, 89), (218, 88, 184), (241, 129, 0),
(217, 17, 255), (124, 74, 181), (70, 70, 70), (255, 228, 255),
(154, 208, 0), (193, 0, 92), (76, 91, 113), (255, 180, 195),
(106, 154, 176),
(230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55),
(254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255),
(104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74),
(135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149),
(183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153),
(146, 139, 141),
(70, 130, 180), (134, 199, 156), (209, 226, 140), (96, 36, 108),
(96, 96, 96), (64, 170, 64), (152, 251, 152), (208, 229, 228),
(206, 186, 171), (152, 161, 64), (116, 112, 0), (0, 114, 143),
(102, 102, 156), (250, 141, 255)]
def __init__(self,
ann_file,
pipeline,
ins_ann_file=None,
classes=None,
data_root=None,
img_prefix='',
seg_prefix=None,
proposal_file=None,
test_mode=False,
filter_empty_gt=True,
file_client_args=dict(backend='disk')):
super().__init__(
ann_file,
pipeline,
classes=classes,
data_root=data_root,
img_prefix=img_prefix,
seg_prefix=seg_prefix,
proposal_file=proposal_file,
test_mode=test_mode,
filter_empty_gt=filter_empty_gt,
file_client_args=file_client_args)
self.ins_ann_file = ins_ann_file
def load_annotations(self, ann_file):
"""Load annotation from COCO Panoptic style annotation file.
Args:
ann_file (str): Path of annotation file.
Returns:
list[dict]: Annotation info from COCO api.
"""
self.coco = COCOPanoptic(ann_file)
self.cat_ids = self.coco.get_cat_ids()
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
self.categories = self.coco.cats
self.img_ids = self.coco.get_img_ids()
data_infos = []
for i in self.img_ids:
info = self.coco.load_imgs([i])[0]
info['filename'] = info['file_name']
info['segm_file'] = info['filename'].replace('jpg', 'png')
data_infos.append(info)
return data_infos
def get_ann_info(self, idx):
"""Get COCO annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
img_id = self.data_infos[idx]['id']
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
ann_info = self.coco.load_anns(ann_ids)
# filter out unmatched images
ann_info = [i for i in ann_info if i['image_id'] == img_id]
return self._parse_ann_info(self.data_infos[idx], ann_info)
def _parse_ann_info(self, img_info, ann_info):
"""Parse annotations and load panoptic ground truths.
Args:
img_info (int): Image info of an image.
ann_info (list[dict]): Annotation info of an image.
Returns:
dict: A dict containing the following keys: bboxes, bboxes_ignore,
labels, masks, seg_map.
"""
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_mask_infos = []
for i, ann in enumerate(ann_info):
x1, y1, w, h = ann['bbox']
if ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
category_id = ann['category_id']
contiguous_cat_id = self.cat2label[category_id]
is_thing = self.coco.load_cats(ids=category_id)[0]['isthing']
if is_thing:
is_crowd = ann.get('iscrowd', False)
if not is_crowd:
gt_bboxes.append(bbox)
gt_labels.append(contiguous_cat_id)
else:
gt_bboxes_ignore.append(bbox)
is_thing = False
mask_info = {
'id': ann['id'],
'category': contiguous_cat_id,
'is_thing': is_thing
}
gt_mask_infos.append(mask_info)
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
ann = dict(
bboxes=gt_bboxes,
labels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
masks=gt_mask_infos,
seg_map=img_info['segm_file'])
return ann
def _filter_imgs(self, min_size=32):
"""Filter images too small or without ground truths."""
ids_with_ann = []
# check whether images have legal thing annotations.
for lists in self.coco.anns.values():
for item in lists:
category_id = item['category_id']
is_thing = self.coco.load_cats(ids=category_id)[0]['isthing']
if not is_thing:
continue
ids_with_ann.append(item['image_id'])
ids_with_ann = set(ids_with_ann)
valid_inds = []
valid_img_ids = []
for i, img_info in enumerate(self.data_infos):
img_id = self.img_ids[i]
if self.filter_empty_gt and img_id not in ids_with_ann:
continue
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
valid_img_ids.append(img_id)
self.img_ids = valid_img_ids
return valid_inds
def _pan2json(self, results, outfile_prefix):
"""Convert panoptic results to COCO panoptic json style."""
label2cat = dict((v, k) for (k, v) in self.cat2label.items())
pred_annotations = []
outdir = os.path.join(os.path.dirname(outfile_prefix), 'panoptic')
for idx in range(len(self)):
img_id = self.img_ids[idx]
segm_file = self.data_infos[idx]['segm_file']
pan = results[idx]
pan_labels = np.unique(pan)
segm_info = []
for pan_label in pan_labels:
sem_label = pan_label % INSTANCE_OFFSET
# We reserve the length of self.CLASSES for VOID label
if sem_label == len(self.CLASSES):
continue
# convert sem_label to json label
cat_id = label2cat[sem_label]
is_thing = self.categories[cat_id]['isthing']
mask = pan == pan_label
area = mask.sum()
segm_info.append({
'id': int(pan_label),
'category_id': cat_id,
'isthing': is_thing,
'area': int(area)
})
# evaluation script uses 0 for VOID label.
pan[pan % INSTANCE_OFFSET == len(self.CLASSES)] = VOID
pan = id2rgb(pan).astype(np.uint8)
mmcv.imwrite(pan[:, :, ::-1], os.path.join(outdir, segm_file))
record = {
'image_id': img_id,
'segments_info': segm_info,
'file_name': segm_file
}
pred_annotations.append(record)
pan_json_results = dict(annotations=pred_annotations)
return pan_json_results
def results2json(self, results, outfile_prefix):
"""Dump the results to a COCO style json file.
There are 4 types of results: proposals, bbox predictions, mask
predictions, panoptic segmentation predictions, and they have
different data types. This method will automatically recognize
the type, and dump them to json files.
.. code-block:: none
[
{
'pan_results': np.array, # shape (h, w)
# ins_results which includes bboxes and RLE encoded masks
# is optional.
'ins_results': (list[np.array], list[list[str]])
},
...
]
Args:
results (list[dict]): Testing results of the dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.panoptic.json", "somepath/xxx.bbox.json",
"somepath/xxx.segm.json"
Returns:
dict[str: str]: Possible keys are "panoptic", "bbox", "segm", \
"proposal", and values are corresponding filenames.
"""
result_files = dict()
# panoptic segmentation results
if 'pan_results' in results[0]:
pan_results = [result['pan_results'] for result in results]
pan_json_results = self._pan2json(pan_results, outfile_prefix)
result_files['panoptic'] = f'{outfile_prefix}.panoptic.json'
mmcv.dump(pan_json_results, result_files['panoptic'])
# instance segmentation results
if 'ins_results' in results[0]:
ins_results = [result['ins_results'] for result in results]
bbox_json_results, segm_json_results = self._segm2json(ins_results)
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
result_files['segm'] = f'{outfile_prefix}.segm.json'
mmcv.dump(bbox_json_results, result_files['bbox'])
mmcv.dump(segm_json_results, result_files['segm'])
return result_files
def evaluate_pan_json(self,
result_files,
outfile_prefix,
logger=None,
classwise=False,
nproc=32):
"""Evaluate PQ according to the panoptic results json file."""
imgs = self.coco.imgs
gt_json = self.coco.img_ann_map # image to annotations
gt_json = [{
'image_id': k,
'segments_info': v,
'file_name': imgs[k]['segm_file']
} for k, v in gt_json.items()]
pred_json = mmcv.load(result_files['panoptic'])
pred_json = dict(
(el['image_id'], el) for el in pred_json['annotations'])
# match the gt_anns and pred_anns in the same image
matched_annotations_list = []
for gt_ann in gt_json:
img_id = gt_ann['image_id']
if img_id not in pred_json.keys():
raise Exception('no prediction for the image'
' with id: {}'.format(img_id))
matched_annotations_list.append((gt_ann, pred_json[img_id]))
gt_folder = self.seg_prefix
pred_folder = os.path.join(os.path.dirname(outfile_prefix), 'panoptic')
pq_stat = pq_compute_multi_core(
matched_annotations_list,
gt_folder,
pred_folder,
self.categories,
self.file_client,
nproc=nproc)
metrics = [('All', None), ('Things', True), ('Stuff', False)]
pq_results = {}
for name, isthing in metrics:
pq_results[name], classwise_results = pq_stat.pq_average(
self.categories, isthing=isthing)
if name == 'All':
pq_results['classwise'] = classwise_results
classwise_results = None
if classwise:
classwise_results = {
k: v
for k, v in zip(self.CLASSES, pq_results['classwise'].values())
}
print_panoptic_table(pq_results, classwise_results, logger=logger)
results = parse_pq_results(pq_results)
results['PQ_copypaste'] = (
f'{results["PQ"]:.3f} {results["SQ"]:.3f} '
f'{results["RQ"]:.3f} '
f'{results["PQ_th"]:.3f} {results["SQ_th"]:.3f} '
f'{results["RQ_th"]:.3f} '
f'{results["PQ_st"]:.3f} {results["SQ_st"]:.3f} '
f'{results["RQ_st"]:.3f}')
return results
def evaluate(self,
results,
metric='PQ',
logger=None,
jsonfile_prefix=None,
classwise=False,
nproc=32,
**kwargs):
"""Evaluation in COCO Panoptic protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. 'PQ', 'bbox',
'segm', 'proposal' are supported. 'pq' will be regarded as 'PQ.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
classwise (bool): Whether to print classwise evaluation results.
Default: False.
nproc (int): Number of processes for panoptic quality computing.
Defaults to 32. When `nproc` exceeds the number of cpu cores,
the number of cpu cores is used.
Returns:
dict[str, float]: COCO Panoptic style evaluation metric.
"""
metrics = metric if isinstance(metric, list) else [metric]
# Compatible with lowercase 'pq'
metrics = ['PQ' if metric == 'pq' else metric for metric in metrics]
allowed_metrics = ['PQ', 'bbox', 'segm', 'proposal']
for metric in metrics:
if metric not in allowed_metrics:
raise KeyError(f'metric {metric} is not supported')
result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
eval_results = {}
outfile_prefix = os.path.join(tmp_dir.name, 'results') \
if tmp_dir is not None else jsonfile_prefix
if 'PQ' in metrics:
eval_pan_results = self.evaluate_pan_json(
result_files, outfile_prefix, logger, classwise, nproc=nproc)
eval_results.update(eval_pan_results)
metrics.remove('PQ')
if (('bbox' in metrics) or ('segm' in metrics)
or ('proposal' in metrics)):
assert 'ins_results' in results[0], 'instance segmentation' \
'results are absent from results'
assert self.ins_ann_file is not None, 'Annotation '\
'file for instance segmentation or object detection ' \
'shuold not be None'
coco_gt = COCO(self.ins_ann_file)
panoptic_cat_ids = self.cat_ids
self.cat_ids = coco_gt.get_cat_ids(cat_names=self.THING_CLASSES)
eval_ins_results = self.evaluate_det_segm(results, result_files,
coco_gt, metrics, logger,
classwise, **kwargs)
self.cat_ids = panoptic_cat_ids
eval_results.update(eval_ins_results)
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
def parse_pq_results(pq_results):
"""Parse the Panoptic Quality results."""
result = dict()
result['PQ'] = 100 * pq_results['All']['pq']
result['SQ'] = 100 * pq_results['All']['sq']
result['RQ'] = 100 * pq_results['All']['rq']
result['PQ_th'] = 100 * pq_results['Things']['pq']
result['SQ_th'] = 100 * pq_results['Things']['sq']
result['RQ_th'] = 100 * pq_results['Things']['rq']
result['PQ_st'] = 100 * pq_results['Stuff']['pq']
result['SQ_st'] = 100 * pq_results['Stuff']['sq']
result['RQ_st'] = 100 * pq_results['Stuff']['rq']
return result
def print_panoptic_table(pq_results, classwise_results=None, logger=None):
"""Print the panoptic evaluation results table.
Args:
pq_results(dict): The Panoptic Quality results.
classwise_results(dict | None): The classwise Panoptic Quality results.
The keys are class names and the values are metrics.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
"""
headers = ['', 'PQ', 'SQ', 'RQ', 'categories']
data = [headers]
for name in ['All', 'Things', 'Stuff']:
numbers = [
f'{(pq_results[name][k] * 100):0.3f}' for k in ['pq', 'sq', 'rq']
]
row = [name] + numbers + [pq_results[name]['n']]
data.append(row)
table = AsciiTable(data)
print_log('Panoptic Evaluation Results:\n' + table.table, logger=logger)
if classwise_results is not None:
class_metrics = [(name, ) + tuple(f'{(metrics[k] * 100):0.3f}'
for k in ['pq', 'sq', 'rq'])
for name, metrics in classwise_results.items()]
num_columns = min(8, len(class_metrics) * 4)
results_flatten = list(itertools.chain(*class_metrics))
headers = ['category', 'PQ', 'SQ', 'RQ'] * (num_columns // 4)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)])
data = [headers]
data += [result for result in results_2d]
table = AsciiTable(data)
print_log(
'Classwise Panoptic Evaluation Results:\n' + table.table,
logger=logger)
|