Spaces:
Runtime error
Runtime error
File size: 18,743 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa
import os
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point
from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks
from .. import builder
from ..builder import HEADS
from .standard_roi_head import StandardRoIHead
@HEADS.register_module()
class PointRendRoIHead(StandardRoIHead):
"""`PointRend <https://arxiv.org/abs/1912.08193>`_."""
def __init__(self, point_head, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.with_bbox and self.with_mask
self.init_point_head(point_head)
def init_point_head(self, point_head):
"""Initialize ``point_head``"""
self.point_head = builder.build_head(point_head)
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
img_metas):
"""Run forward function and calculate loss for mask head and point head
in training."""
mask_results = super()._mask_forward_train(x, sampling_results,
bbox_feats, gt_masks,
img_metas)
if mask_results['loss_mask'] is not None:
loss_point = self._mask_point_forward_train(
x, sampling_results, mask_results['mask_pred'], gt_masks,
img_metas)
mask_results['loss_mask'].update(loss_point)
return mask_results
def _mask_point_forward_train(self, x, sampling_results, mask_pred,
gt_masks, img_metas):
"""Run forward function and calculate loss for point head in
training."""
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
rel_roi_points = self.point_head.get_roi_rel_points_train(
mask_pred, pos_labels, cfg=self.train_cfg)
rois = bbox2roi([res.pos_bboxes for res in sampling_results])
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, rois, rel_roi_points, img_metas)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
mask_point_target = self.point_head.get_targets(
rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg)
loss_mask_point = self.point_head.loss(mask_point_pred,
mask_point_target, pos_labels)
return loss_mask_point
def _get_fine_grained_point_feats(self, x, rois, rel_roi_points,
img_metas):
"""Sample fine grained feats from each level feature map and
concatenate them together.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the [mask_height, mask_width] grid.
img_metas (list[dict]): Image meta info.
Returns:
Tensor: The fine grained features for each points,
has shape (num_rois, feats_channels, num_points).
"""
num_imgs = len(img_metas)
fine_grained_feats = []
for idx in range(self.mask_roi_extractor.num_inputs):
feats = x[idx]
spatial_scale = 1. / float(
self.mask_roi_extractor.featmap_strides[idx])
point_feats = []
for batch_ind in range(num_imgs):
# unravel batch dim
feat = feats[batch_ind].unsqueeze(0)
inds = (rois[:, 0].long() == batch_ind)
if inds.any():
rel_img_points = rel_roi_point_to_rel_img_point(
rois[inds], rel_roi_points[inds], feat.shape[2:],
spatial_scale).unsqueeze(0)
point_feat = point_sample(feat, rel_img_points)
point_feat = point_feat.squeeze(0).transpose(0, 1)
point_feats.append(point_feat)
fine_grained_feats.append(torch.cat(point_feats, dim=0))
return torch.cat(fine_grained_feats, dim=1)
def _mask_point_forward_test(self, x, rois, label_pred, mask_pred,
img_metas):
"""Mask refining process with point head in testing.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
label_pred (Tensor): The predication class for each rois.
mask_pred (Tensor): The predication coarse masks of
shape (num_rois, num_classes, small_size, small_size).
img_metas (list[dict]): Image meta info.
Returns:
Tensor: The refined masks of shape (num_rois, num_classes,
large_size, large_size).
"""
refined_mask_pred = mask_pred.clone()
for subdivision_step in range(self.test_cfg.subdivision_steps):
refined_mask_pred = F.interpolate(
refined_mask_pred,
scale_factor=self.test_cfg.scale_factor,
mode='bilinear',
align_corners=False)
# If `subdivision_num_points` is larger or equal to the
# resolution of the next step, then we can skip this step
num_rois, channels, mask_height, mask_width = \
refined_mask_pred.shape
if (self.test_cfg.subdivision_num_points >=
self.test_cfg.scale_factor**2 * mask_height * mask_width
and
subdivision_step < self.test_cfg.subdivision_steps - 1):
continue
point_indices, rel_roi_points = \
self.point_head.get_roi_rel_points_test(
refined_mask_pred, label_pred, cfg=self.test_cfg)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, rois, rel_roi_points, img_metas)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_mask_pred = refined_mask_pred.reshape(
num_rois, channels, mask_height * mask_width)
refined_mask_pred = refined_mask_pred.scatter_(
2, point_indices, mask_point_pred)
refined_mask_pred = refined_mask_pred.view(num_rois, channels,
mask_height, mask_width)
return refined_mask_pred
def simple_test_mask(self,
x,
img_metas,
det_bboxes,
det_labels,
rescale=False):
"""Obtain mask prediction without augmentation."""
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
if isinstance(scale_factors[0], float):
warnings.warn(
'Scale factor in img_metas should be a '
'ndarray with shape (4,) '
'arrange as (factor_w, factor_h, factor_w, factor_h), '
'The scale_factor with float type has been deprecated. ')
scale_factors = np.array([scale_factors] * 4, dtype=np.float32)
num_imgs = len(det_bboxes)
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
segm_results = [[[] for _ in range(self.mask_head.num_classes)]
for _ in range(num_imgs)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))]
if rescale:
scale_factors = [
torch.from_numpy(scale_factor).to(det_bboxes[0].device)
for scale_factor in scale_factors
]
_bboxes = [
_bboxes[i] * scale_factors[i] for i in range(len(_bboxes))
]
mask_rois = bbox2roi(_bboxes)
mask_results = self._mask_forward(x, mask_rois)
# split batch mask prediction back to each image
mask_pred = mask_results['mask_pred']
num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes]
mask_preds = mask_pred.split(num_mask_roi_per_img, 0)
mask_rois = mask_rois.split(num_mask_roi_per_img, 0)
# apply mask post-processing to each image individually
segm_results = []
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
segm_results.append(
[[] for _ in range(self.mask_head.num_classes)])
else:
x_i = [xx[[i]] for xx in x]
mask_rois_i = mask_rois[i]
mask_rois_i[:, 0] = 0 # TODO: remove this hack
mask_pred_i = self._mask_point_forward_test(
x_i, mask_rois_i, det_labels[i], mask_preds[i],
[img_metas])
segm_result = self.mask_head.get_seg_masks(
mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg,
ori_shapes[i], scale_factors[i], rescale)
segm_results.append(segm_result)
return segm_results
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
"""Test for mask head with test time augmentation."""
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes)]
else:
aug_masks = []
for x, img_meta in zip(feats, img_metas):
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
scale_factor, flip)
mask_rois = bbox2roi([_bboxes])
mask_results = self._mask_forward(x, mask_rois)
mask_results['mask_pred'] = self._mask_point_forward_test(
x, mask_rois, det_labels, mask_results['mask_pred'],
img_meta)
# convert to numpy array to save memory
aug_masks.append(
mask_results['mask_pred'].sigmoid().cpu().numpy())
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg)
ori_shape = img_metas[0][0]['ori_shape']
segm_result = self.mask_head.get_seg_masks(
merged_masks,
det_bboxes,
det_labels,
self.test_cfg,
ori_shape,
scale_factor=1.0,
rescale=False)
return segm_result
def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points):
"""Export the process of sampling fine grained feats to onnx.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the [mask_height, mask_width] grid.
Returns:
Tensor: The fine grained features for each points,
has shape (num_rois, feats_channels, num_points).
"""
batch_size = x[0].shape[0]
num_rois = rois.shape[0]
fine_grained_feats = []
for idx in range(self.mask_roi_extractor.num_inputs):
feats = x[idx]
spatial_scale = 1. / float(
self.mask_roi_extractor.featmap_strides[idx])
rel_img_points = rel_roi_point_to_rel_img_point(
rois, rel_roi_points, feats, spatial_scale)
channels = feats.shape[1]
num_points = rel_img_points.shape[1]
rel_img_points = rel_img_points.reshape(batch_size, -1, num_points,
2)
point_feats = point_sample(feats, rel_img_points)
point_feats = point_feats.transpose(1, 2).reshape(
num_rois, channels, num_points)
fine_grained_feats.append(point_feats)
return torch.cat(fine_grained_feats, dim=1)
def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred):
"""Export mask refining process with point head to onnx.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
rois (Tensor): shape (num_rois, 5).
label_pred (Tensor): The predication class for each rois.
mask_pred (Tensor): The predication coarse masks of
shape (num_rois, num_classes, small_size, small_size).
Returns:
Tensor: The refined masks of shape (num_rois, num_classes,
large_size, large_size).
"""
refined_mask_pred = mask_pred.clone()
for subdivision_step in range(self.test_cfg.subdivision_steps):
refined_mask_pred = F.interpolate(
refined_mask_pred,
scale_factor=self.test_cfg.scale_factor,
mode='bilinear',
align_corners=False)
# If `subdivision_num_points` is larger or equal to the
# resolution of the next step, then we can skip this step
num_rois, channels, mask_height, mask_width = \
refined_mask_pred.shape
if (self.test_cfg.subdivision_num_points >=
self.test_cfg.scale_factor**2 * mask_height * mask_width
and
subdivision_step < self.test_cfg.subdivision_steps - 1):
continue
point_indices, rel_roi_points = \
self.point_head.get_roi_rel_points_test(
refined_mask_pred, label_pred, cfg=self.test_cfg)
fine_grained_point_feats = self._onnx_get_fine_grained_point_feats(
x, rois, rel_roi_points)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_mask_pred = refined_mask_pred.reshape(
num_rois, channels, mask_height * mask_width)
is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
# avoid ScatterElements op in ONNX for TensorRT
if is_trt_backend:
mask_shape = refined_mask_pred.shape
point_shape = point_indices.shape
inds_dim0 = torch.arange(point_shape[0]).reshape(
point_shape[0], 1, 1).expand_as(point_indices)
inds_dim1 = torch.arange(point_shape[1]).reshape(
1, point_shape[1], 1).expand_as(point_indices)
inds_1d = inds_dim0.reshape(
-1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape(
-1) * mask_shape[2] + point_indices.reshape(-1)
refined_mask_pred = refined_mask_pred.reshape(-1)
refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1)
refined_mask_pred = refined_mask_pred.reshape(*mask_shape)
else:
refined_mask_pred = refined_mask_pred.scatter_(
2, point_indices, mask_point_pred)
refined_mask_pred = refined_mask_pred.view(num_rois, channels,
mask_height, mask_width)
return refined_mask_pred
def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs):
"""Export mask branch to onnx which supports batch inference.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
img_metas (list[dict]): Image meta info.
det_bboxes (Tensor): Bboxes and corresponding scores.
has shape [N, num_bboxes, 5].
det_labels (Tensor): class labels of
shape [N, num_bboxes].
Returns:
Tensor: The segmentation results of shape [N, num_bboxes,
image_height, image_width].
"""
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
raise RuntimeError('[ONNX Error] Can not record MaskHead '
'as it has not been executed this time')
batch_size = det_bboxes.size(0)
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
det_bboxes = det_bboxes[..., :4]
batch_index = torch.arange(
det_bboxes.size(0), device=det_bboxes.device).float().view(
-1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1)
mask_rois = torch.cat([batch_index, det_bboxes], dim=-1)
mask_rois = mask_rois.view(-1, 5)
mask_results = self._mask_forward(x, mask_rois)
mask_pred = mask_results['mask_pred']
max_shape = img_metas[0]['img_shape_for_onnx']
num_det = det_bboxes.shape[1]
det_bboxes = det_bboxes.reshape(-1, 4)
det_labels = det_labels.reshape(-1)
mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels,
mask_pred)
segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes,
det_labels, self.test_cfg,
max_shape)
segm_results = segm_results.reshape(batch_size, num_det, max_shape[0],
max_shape[1])
return segm_results
|