Spaces:
Runtime error
Runtime error
File size: 8,364 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.builder import HEADS
from mmdet.models.utils import build_linear_layer
from .bbox_head import BBoxHead
@HEADS.register_module()
class ConvFCBBoxHead(BBoxHead):
r"""More general bbox head, with shared conv and fc layers and two optional
separated branches.
.. code-block:: none
/-> cls convs -> cls fcs -> cls
shared convs -> shared fcs
\-> reg convs -> reg fcs -> reg
""" # noqa: W605
def __init__(self,
num_shared_convs=0,
num_shared_fcs=0,
num_cls_convs=0,
num_cls_fcs=0,
num_reg_convs=0,
num_reg_fcs=0,
conv_out_channels=256,
fc_out_channels=1024,
conv_cfg=None,
norm_cfg=None,
init_cfg=None,
*args,
**kwargs):
super(ConvFCBBoxHead, self).__init__(
*args, init_cfg=init_cfg, **kwargs)
assert (num_shared_convs + num_shared_fcs + num_cls_convs +
num_cls_fcs + num_reg_convs + num_reg_fcs > 0)
if num_cls_convs > 0 or num_reg_convs > 0:
assert num_shared_fcs == 0
if not self.with_cls:
assert num_cls_convs == 0 and num_cls_fcs == 0
if not self.with_reg:
assert num_reg_convs == 0 and num_reg_fcs == 0
self.num_shared_convs = num_shared_convs
self.num_shared_fcs = num_shared_fcs
self.num_cls_convs = num_cls_convs
self.num_cls_fcs = num_cls_fcs
self.num_reg_convs = num_reg_convs
self.num_reg_fcs = num_reg_fcs
self.conv_out_channels = conv_out_channels
self.fc_out_channels = fc_out_channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
# add shared convs and fcs
self.shared_convs, self.shared_fcs, last_layer_dim = \
self._add_conv_fc_branch(
self.num_shared_convs, self.num_shared_fcs, self.in_channels,
True)
self.shared_out_channels = last_layer_dim
# add cls specific branch
self.cls_convs, self.cls_fcs, self.cls_last_dim = \
self._add_conv_fc_branch(
self.num_cls_convs, self.num_cls_fcs, self.shared_out_channels)
# add reg specific branch
self.reg_convs, self.reg_fcs, self.reg_last_dim = \
self._add_conv_fc_branch(
self.num_reg_convs, self.num_reg_fcs, self.shared_out_channels)
if self.num_shared_fcs == 0 and not self.with_avg_pool:
if self.num_cls_fcs == 0:
self.cls_last_dim *= self.roi_feat_area
if self.num_reg_fcs == 0:
self.reg_last_dim *= self.roi_feat_area
self.relu = nn.ReLU(inplace=True)
# reconstruct fc_cls and fc_reg since input channels are changed
if self.with_cls:
if self.custom_cls_channels:
cls_channels = self.loss_cls.get_cls_channels(self.num_classes)
else:
cls_channels = self.num_classes + 1
self.fc_cls = build_linear_layer(
self.cls_predictor_cfg,
in_features=self.cls_last_dim,
out_features=cls_channels)
if self.with_reg:
out_dim_reg = (4 if self.reg_class_agnostic else 4 *
self.num_classes)
self.fc_reg = build_linear_layer(
self.reg_predictor_cfg,
in_features=self.reg_last_dim,
out_features=out_dim_reg)
if init_cfg is None:
# when init_cfg is None,
# It has been set to
# [[dict(type='Normal', std=0.01, override=dict(name='fc_cls'))],
# [dict(type='Normal', std=0.001, override=dict(name='fc_reg'))]
# after `super(ConvFCBBoxHead, self).__init__()`
# we only need to append additional configuration
# for `shared_fcs`, `cls_fcs` and `reg_fcs`
self.init_cfg += [
dict(
type='Xavier',
distribution='uniform',
override=[
dict(name='shared_fcs'),
dict(name='cls_fcs'),
dict(name='reg_fcs')
])
]
def _add_conv_fc_branch(self,
num_branch_convs,
num_branch_fcs,
in_channels,
is_shared=False):
"""Add shared or separable branch.
convs -> avg pool (optional) -> fcs
"""
last_layer_dim = in_channels
# add branch specific conv layers
branch_convs = nn.ModuleList()
if num_branch_convs > 0:
for i in range(num_branch_convs):
conv_in_channels = (
last_layer_dim if i == 0 else self.conv_out_channels)
branch_convs.append(
ConvModule(
conv_in_channels,
self.conv_out_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
last_layer_dim = self.conv_out_channels
# add branch specific fc layers
branch_fcs = nn.ModuleList()
if num_branch_fcs > 0:
# for shared branch, only consider self.with_avg_pool
# for separated branches, also consider self.num_shared_fcs
if (is_shared
or self.num_shared_fcs == 0) and not self.with_avg_pool:
last_layer_dim *= self.roi_feat_area
for i in range(num_branch_fcs):
fc_in_channels = (
last_layer_dim if i == 0 else self.fc_out_channels)
branch_fcs.append(
nn.Linear(fc_in_channels, self.fc_out_channels))
last_layer_dim = self.fc_out_channels
return branch_convs, branch_fcs, last_layer_dim
def forward(self, x):
# shared part
if self.num_shared_convs > 0:
for conv in self.shared_convs:
x = conv(x)
if self.num_shared_fcs > 0:
if self.with_avg_pool:
x = self.avg_pool(x)
x = x.flatten(1)
for fc in self.shared_fcs:
x = self.relu(fc(x))
# separate branches
x_cls = x
x_reg = x
for conv in self.cls_convs:
x_cls = conv(x_cls)
if x_cls.dim() > 2:
if self.with_avg_pool:
x_cls = self.avg_pool(x_cls)
x_cls = x_cls.flatten(1)
for fc in self.cls_fcs:
x_cls = self.relu(fc(x_cls))
for conv in self.reg_convs:
x_reg = conv(x_reg)
if x_reg.dim() > 2:
if self.with_avg_pool:
x_reg = self.avg_pool(x_reg)
x_reg = x_reg.flatten(1)
for fc in self.reg_fcs:
x_reg = self.relu(fc(x_reg))
cls_score = self.fc_cls(x_cls) if self.with_cls else None
bbox_pred = self.fc_reg(x_reg) if self.with_reg else None
return cls_score, bbox_pred
@HEADS.register_module()
class Shared2FCBBoxHead(ConvFCBBoxHead):
def __init__(self, fc_out_channels=1024, *args, **kwargs):
super(Shared2FCBBoxHead, self).__init__(
num_shared_convs=0,
num_shared_fcs=2,
num_cls_convs=0,
num_cls_fcs=0,
num_reg_convs=0,
num_reg_fcs=0,
fc_out_channels=fc_out_channels,
*args,
**kwargs)
@HEADS.register_module()
class Shared4Conv1FCBBoxHead(ConvFCBBoxHead):
def __init__(self, fc_out_channels=1024, *args, **kwargs):
super(Shared4Conv1FCBBoxHead, self).__init__(
num_shared_convs=4,
num_shared_fcs=1,
num_cls_convs=0,
num_cls_fcs=0,
num_reg_convs=0,
num_reg_fcs=0,
fc_out_channels=fc_out_channels,
*args,
**kwargs)
|