File size: 25,657 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner import BaseModule, auto_fp16, force_fp32
from torch.nn.modules.utils import _pair

from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.losses import accuracy
from mmdet.models.utils import build_linear_layer


@HEADS.register_module()
class BBoxHead(BaseModule):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively."""

    def __init__(self,
                 with_avg_pool=False,
                 with_cls=True,
                 with_reg=True,
                 roi_feat_size=7,
                 in_channels=256,
                 num_classes=80,
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     clip_border=True,
                     target_means=[0., 0., 0., 0.],
                     target_stds=[0.1, 0.1, 0.2, 0.2]),
                 reg_class_agnostic=False,
                 reg_decoded_bbox=False,
                 reg_predictor_cfg=dict(type='Linear'),
                 cls_predictor_cfg=dict(type='Linear'),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=1.0),
                 init_cfg=None):
        super(BBoxHead, self).__init__(init_cfg)
        assert with_cls or with_reg
        self.with_avg_pool = with_avg_pool
        self.with_cls = with_cls
        self.with_reg = with_reg
        self.roi_feat_size = _pair(roi_feat_size)
        self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1]
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.reg_class_agnostic = reg_class_agnostic
        self.reg_decoded_bbox = reg_decoded_bbox
        self.reg_predictor_cfg = reg_predictor_cfg
        self.cls_predictor_cfg = cls_predictor_cfg
        self.fp16_enabled = False

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)

        in_channels = self.in_channels
        if self.with_avg_pool:
            self.avg_pool = nn.AvgPool2d(self.roi_feat_size)
        else:
            in_channels *= self.roi_feat_area
        if self.with_cls:
            # need to add background class
            if self.custom_cls_channels:
                cls_channels = self.loss_cls.get_cls_channels(self.num_classes)
            else:
                cls_channels = num_classes + 1
            self.fc_cls = build_linear_layer(
                self.cls_predictor_cfg,
                in_features=in_channels,
                out_features=cls_channels)
        if self.with_reg:
            out_dim_reg = 4 if reg_class_agnostic else 4 * num_classes
            self.fc_reg = build_linear_layer(
                self.reg_predictor_cfg,
                in_features=in_channels,
                out_features=out_dim_reg)
        self.debug_imgs = None
        if init_cfg is None:
            self.init_cfg = []
            if self.with_cls:
                self.init_cfg += [
                    dict(
                        type='Normal', std=0.01, override=dict(name='fc_cls'))
                ]
            if self.with_reg:
                self.init_cfg += [
                    dict(
                        type='Normal', std=0.001, override=dict(name='fc_reg'))
                ]

    @property
    def custom_cls_channels(self):
        return getattr(self.loss_cls, 'custom_cls_channels', False)

    @property
    def custom_activation(self):
        return getattr(self.loss_cls, 'custom_activation', False)

    @property
    def custom_accuracy(self):
        return getattr(self.loss_cls, 'custom_accuracy', False)

    @auto_fp16()
    def forward(self, x):
        if self.with_avg_pool:
            if x.numel() > 0:
                x = self.avg_pool(x)
                x = x.view(x.size(0), -1)
            else:
                # avg_pool does not support empty tensor,
                # so use torch.mean instead it
                x = torch.mean(x, dim=(-1, -2))
        cls_score = self.fc_cls(x) if self.with_cls else None
        bbox_pred = self.fc_reg(x) if self.with_reg else None
        return cls_score, bbox_pred

    def _get_target_single(self, pos_bboxes, neg_bboxes, pos_gt_bboxes,
                           pos_gt_labels, cfg):
        """Calculate the ground truth for proposals in the single image
        according to the sampling results.

        Args:
            pos_bboxes (Tensor): Contains all the positive boxes,
                has shape (num_pos, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            neg_bboxes (Tensor): Contains all the negative boxes,
                has shape (num_neg, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_bboxes (Tensor): Contains gt_boxes for
                all positive samples, has shape (num_pos, 4),
                the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_labels (Tensor): Contains gt_labels for
                all positive samples, has shape (num_pos, ).
            cfg (obj:`ConfigDict`): `train_cfg` of R-CNN.

        Returns:
            Tuple[Tensor]: Ground truth for proposals
            in a single image. Containing the following Tensors:

                - labels(Tensor): Gt_labels for all proposals, has
                  shape (num_proposals,).
                - label_weights(Tensor): Labels_weights for all
                  proposals, has shape (num_proposals,).
                - bbox_targets(Tensor):Regression target for all
                  proposals, has shape (num_proposals, 4), the
                  last dimension 4 represents [tl_x, tl_y, br_x, br_y].
                - bbox_weights(Tensor):Regression weights for all
                  proposals, has shape (num_proposals, 4).
        """
        num_pos = pos_bboxes.size(0)
        num_neg = neg_bboxes.size(0)
        num_samples = num_pos + num_neg

        # original implementation uses new_zeros since BG are set to be 0
        # now use empty & fill because BG cat_id = num_classes,
        # FG cat_id = [0, num_classes-1]
        labels = pos_bboxes.new_full((num_samples, ),
                                     self.num_classes,
                                     dtype=torch.long)
        label_weights = pos_bboxes.new_zeros(num_samples)
        bbox_targets = pos_bboxes.new_zeros(num_samples, 4)
        bbox_weights = pos_bboxes.new_zeros(num_samples, 4)
        if num_pos > 0:
            labels[:num_pos] = pos_gt_labels
            pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight
            label_weights[:num_pos] = pos_weight
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    pos_bboxes, pos_gt_bboxes)
            else:
                # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
                # is applied directly on the decoded bounding boxes, both
                # the predicted boxes and regression targets should be with
                # absolute coordinate format.
                pos_bbox_targets = pos_gt_bboxes
            bbox_targets[:num_pos, :] = pos_bbox_targets
            bbox_weights[:num_pos, :] = 1
        if num_neg > 0:
            label_weights[-num_neg:] = 1.0

        return labels, label_weights, bbox_targets, bbox_weights

    def get_targets(self,
                    sampling_results,
                    gt_bboxes,
                    gt_labels,
                    rcnn_train_cfg,
                    concat=True):
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results.

        Almost the same as the implementation in bbox_head, we passed
        additional parameters pos_inds_list and neg_inds_list to
        `_get_target_single` function.

        Args:
            sampling_results (List[obj:SamplingResults]): Assign results of
                all images in a batch after sampling.
            gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,
                each tensor has shape (num_gt, 4),  the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            gt_labels (list[Tensor]): Gt_labels of all images in a batch,
                each tensor has shape (num_gt,).
            rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
            concat (bool): Whether to concatenate the results of all
                the images in a single batch.

        Returns:
            Tuple[Tensor]: Ground truth for proposals in a single image.
            Containing the following list of Tensors:

                - labels (list[Tensor],Tensor): Gt_labels for all
                  proposals in a batch, each tensor in list has
                  shape (num_proposals,) when `concat=False`, otherwise
                  just a single tensor has shape (num_all_proposals,).
                - label_weights (list[Tensor]): Labels_weights for
                  all proposals in a batch, each tensor in list has
                  shape (num_proposals,) when `concat=False`, otherwise
                  just a single tensor has shape (num_all_proposals,).
                - bbox_targets (list[Tensor],Tensor): Regression target
                  for all proposals in a batch, each tensor in list
                  has shape (num_proposals, 4) when `concat=False`,
                  otherwise just a single tensor has shape
                  (num_all_proposals, 4), the last dimension 4 represents
                  [tl_x, tl_y, br_x, br_y].
                - bbox_weights (list[tensor],Tensor): Regression weights for
                  all proposals in a batch, each tensor in list has shape
                  (num_proposals, 4) when `concat=False`, otherwise just a
                  single tensor has shape (num_all_proposals, 4).
        """
        pos_bboxes_list = [res.pos_bboxes for res in sampling_results]
        neg_bboxes_list = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results]
        labels, label_weights, bbox_targets, bbox_weights = multi_apply(
            self._get_target_single,
            pos_bboxes_list,
            neg_bboxes_list,
            pos_gt_bboxes_list,
            pos_gt_labels_list,
            cfg=rcnn_train_cfg)

        if concat:
            labels = torch.cat(labels, 0)
            label_weights = torch.cat(label_weights, 0)
            bbox_targets = torch.cat(bbox_targets, 0)
            bbox_weights = torch.cat(bbox_weights, 0)
        return labels, label_weights, bbox_targets, bbox_weights

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             reduction_override=None):
        losses = dict()
        if cls_score is not None:
            avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
            if cls_score.numel() > 0:
                loss_cls_ = self.loss_cls(
                    cls_score,
                    labels,
                    label_weights,
                    avg_factor=avg_factor,
                    reduction_override=reduction_override)
                if isinstance(loss_cls_, dict):
                    losses.update(loss_cls_)
                else:
                    losses['loss_cls'] = loss_cls_
                if self.custom_activation:
                    acc_ = self.loss_cls.get_accuracy(cls_score, labels)
                    losses.update(acc_)
                else:
                    losses['acc'] = accuracy(cls_score, labels)
        if bbox_pred is not None:
            bg_class_ind = self.num_classes
            # 0~self.num_classes-1 are FG, self.num_classes is BG
            pos_inds = (labels >= 0) & (labels < bg_class_ind)
            # do not perform bounding box regression for BG anymore.
            if pos_inds.any():
                if self.reg_decoded_bbox:
                    # When the regression loss (e.g. `IouLoss`,
                    # `GIouLoss`, `DIouLoss`) is applied directly on
                    # the decoded bounding boxes, it decodes the
                    # already encoded coordinates to absolute format.
                    bbox_pred = self.bbox_coder.decode(rois[:, 1:], bbox_pred)
                if self.reg_class_agnostic:
                    pos_bbox_pred = bbox_pred.view(
                        bbox_pred.size(0), 4)[pos_inds.type(torch.bool)]
                else:
                    pos_bbox_pred = bbox_pred.view(
                        bbox_pred.size(0), -1,
                        4)[pos_inds.type(torch.bool),
                           labels[pos_inds.type(torch.bool)]]
                losses['loss_bbox'] = self.loss_bbox(
                    pos_bbox_pred,
                    bbox_targets[pos_inds.type(torch.bool)],
                    bbox_weights[pos_inds.type(torch.bool)],
                    avg_factor=bbox_targets.size(0),
                    reduction_override=reduction_override)
            else:
                losses['loss_bbox'] = bbox_pred[pos_inds].sum()
        return losses

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def get_bboxes(self,
                   rois,
                   cls_score,
                   bbox_pred,
                   img_shape,
                   scale_factor,
                   rescale=False,
                   cfg=None):
        """Transform network output for a batch into bbox predictions.

        Args:
            rois (Tensor): Boxes to be transformed. Has shape (num_boxes, 5).
                last dimension 5 arrange as (batch_index, x1, y1, x2, y2).
            cls_score (Tensor): Box scores, has shape
                (num_boxes, num_classes + 1).
            bbox_pred (Tensor, optional): Box energies / deltas.
                has shape (num_boxes, num_classes * 4).
            img_shape (Sequence[int], optional): Maximum bounds for boxes,
                specifies (H, W, C) or (H, W).
            scale_factor (ndarray): Scale factor of the
               image arrange as (w_scale, h_scale, w_scale, h_scale).
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Default: None

        Returns:
            tuple[Tensor, Tensor]:
                First tensor is `det_bboxes`, has the shape
                (num_boxes, 5) and last
                dimension 5 represent (tl_x, tl_y, br_x, br_y, score).
                Second tensor is the labels with shape (num_boxes, ).
        """

        # some loss (Seesaw loss..) may have custom activation
        if self.custom_cls_channels:
            scores = self.loss_cls.get_activation(cls_score)
        else:
            scores = F.softmax(
                cls_score, dim=-1) if cls_score is not None else None
        # bbox_pred would be None in some detector when with_reg is False,
        # e.g. Grid R-CNN.
        if bbox_pred is not None:
            bboxes = self.bbox_coder.decode(
                rois[..., 1:], bbox_pred, max_shape=img_shape)
        else:
            bboxes = rois[:, 1:].clone()
            if img_shape is not None:
                bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1])
                bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0])

        if rescale and bboxes.size(0) > 0:
            scale_factor = bboxes.new_tensor(scale_factor)
            bboxes = (bboxes.view(bboxes.size(0), -1, 4) / scale_factor).view(
                bboxes.size()[0], -1)

        if cfg is None:
            return bboxes, scores
        else:
            det_bboxes, det_labels = multiclass_nms(bboxes, scores,
                                                    cfg.score_thr, cfg.nms,
                                                    cfg.max_per_img)

            return det_bboxes, det_labels

    @force_fp32(apply_to=('bbox_preds', ))
    def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
        """Refine bboxes during training.

        Args:
            rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
                and bs is the sampled RoIs per image. The first column is
                the image id and the next 4 columns are x1, y1, x2, y2.
            labels (Tensor): Shape (n*bs, ).
            bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
            pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
                is a gt bbox.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Refined bboxes of each image in a mini-batch.

        Example:
            >>> # xdoctest: +REQUIRES(module:kwarray)
            >>> import kwarray
            >>> import numpy as np
            >>> from mmdet.core.bbox.demodata import random_boxes
            >>> self = BBoxHead(reg_class_agnostic=True)
            >>> n_roi = 2
            >>> n_img = 4
            >>> scale = 512
            >>> rng = np.random.RandomState(0)
            >>> img_metas = [{'img_shape': (scale, scale)}
            ...              for _ in range(n_img)]
            >>> # Create rois in the expected format
            >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)
            >>> img_ids = torch.randint(0, n_img, (n_roi,))
            >>> img_ids = img_ids.float()
            >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)
            >>> # Create other args
            >>> labels = torch.randint(0, 2, (n_roi,)).long()
            >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)
            >>> # For each image, pretend random positive boxes are gts
            >>> is_label_pos = (labels.numpy() > 0).astype(np.int)
            >>> lbl_per_img = kwarray.group_items(is_label_pos,
            ...                                   img_ids.numpy())
            >>> pos_per_img = [sum(lbl_per_img.get(gid, []))
            ...                for gid in range(n_img)]
            >>> pos_is_gts = [
            >>>     torch.randint(0, 2, (npos,)).byte().sort(
            >>>         descending=True)[0]
            >>>     for npos in pos_per_img
            >>> ]
            >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,
            >>>                    pos_is_gts, img_metas)
            >>> print(bboxes_list)
        """
        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() <= len(img_metas)

        bboxes_list = []
        for i in range(len(img_metas)):
            inds = torch.nonzero(
                rois[:, 0] == i, as_tuple=False).squeeze(dim=1)
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            bbox_pred_ = bbox_preds[inds]
            img_meta_ = img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)

            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep

            bboxes_list.append(bboxes[keep_inds.type(torch.bool)])

        return bboxes_list

    @force_fp32(apply_to=('bbox_pred', ))
    def regress_by_class(self, rois, label, bbox_pred, img_meta):
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): Rois from `rpn_head` or last stage
                `bbox_head`, has shape (num_proposals, 4) or
                (num_proposals, 5).
            label (Tensor): Only used when `self.reg_class_agnostic`
                is False, has shape (num_proposals, ).
            bbox_pred (Tensor): Regression prediction of
                current stage `bbox_head`. When `self.reg_class_agnostic`
                is False, it has shape (n, num_classes * 4), otherwise
                it has shape (n, 4).
            img_meta (dict): Image meta info.

        Returns:
            Tensor: Regressed bboxes, the same shape as input rois.
        """

        assert rois.size(1) == 4 or rois.size(1) == 5, repr(rois.shape)

        if not self.reg_class_agnostic:
            label = label * 4
            inds = torch.stack((label, label + 1, label + 2, label + 3), 1)
            bbox_pred = torch.gather(bbox_pred, 1, inds)
        assert bbox_pred.size(1) == 4

        max_shape = img_meta['img_shape']

        if rois.size(1) == 4:
            new_rois = self.bbox_coder.decode(
                rois, bbox_pred, max_shape=max_shape)
        else:
            bboxes = self.bbox_coder.decode(
                rois[:, 1:], bbox_pred, max_shape=max_shape)
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois

    def onnx_export(self,
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    cfg=None,
                    **kwargs):
        """Transform network output for a batch into bbox predictions.

        Args:
            rois (Tensor): Boxes to be transformed.
                Has shape (B, num_boxes, 5)
            cls_score (Tensor): Box scores. has shape
                (B, num_boxes, num_classes + 1), 1 represent the background.
            bbox_pred (Tensor, optional): Box energies / deltas for,
                has shape (B, num_boxes, num_classes * 4) when.
            img_shape (torch.Tensor): Shape of image.
            cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Default: None

        Returns:
            tuple[Tensor, Tensor]: dets of shape [N, num_det, 5]
                and class labels of shape [N, num_det].
        """

        assert rois.ndim == 3, 'Only support export two stage ' \
                               'model to ONNX ' \
                               'with batch dimension. '
        if self.custom_cls_channels:
            scores = self.loss_cls.get_activation(cls_score)
        else:
            scores = F.softmax(
                cls_score, dim=-1) if cls_score is not None else None

        if bbox_pred is not None:
            bboxes = self.bbox_coder.decode(
                rois[..., 1:], bbox_pred, max_shape=img_shape)
        else:
            bboxes = rois[..., 1:].clone()
            if img_shape is not None:
                max_shape = bboxes.new_tensor(img_shape)[..., :2]
                min_xy = bboxes.new_tensor(0)
                max_xy = torch.cat(
                    [max_shape] * 2, dim=-1).flip(-1).unsqueeze(-2)
                bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
                bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)

        # Replace multiclass_nms with ONNX::NonMaxSuppression in deployment
        from mmdet.core.export import add_dummy_nms_for_onnx
        max_output_boxes_per_class = cfg.nms.get('max_output_boxes_per_class',
                                                 cfg.max_per_img)
        iou_threshold = cfg.nms.get('iou_threshold', 0.5)
        score_threshold = cfg.score_thr
        nms_pre = cfg.get('deploy_nms_pre', -1)

        scores = scores[..., :self.num_classes]
        if self.reg_class_agnostic:
            return add_dummy_nms_for_onnx(
                bboxes,
                scores,
                max_output_boxes_per_class,
                iou_threshold,
                score_threshold,
                pre_top_k=nms_pre,
                after_top_k=cfg.max_per_img)
        else:
            batch_size = scores.shape[0]
            labels = torch.arange(
                self.num_classes, dtype=torch.long).to(scores.device)
            labels = labels.view(1, 1, -1).expand_as(scores)
            labels = labels.reshape(batch_size, -1)
            scores = scores.reshape(batch_size, -1)
            bboxes = bboxes.reshape(batch_size, -1, 4)

            max_size = torch.max(img_shape)
            # Offset bboxes of each class so that bboxes of different labels
            #  do not overlap.
            offsets = (labels * max_size + 1).unsqueeze(2)
            bboxes_for_nms = bboxes + offsets

            batch_dets, labels = add_dummy_nms_for_onnx(
                bboxes_for_nms,
                scores.unsqueeze(2),
                max_output_boxes_per_class,
                iou_threshold,
                score_threshold,
                pre_top_k=nms_pre,
                after_top_k=cfg.max_per_img,
                labels=labels)
            # Offset the bboxes back after dummy nms.
            offsets = (labels * max_size + 1).unsqueeze(2)
            # Indexing + inplace operation fails with dynamic shape in ONNX
            # original style: batch_dets[..., :4] -= offsets
            bboxes, scores = batch_dets[..., 0:4], batch_dets[..., 4:5]
            bboxes -= offsets
            batch_dets = torch.cat([bboxes, scores], dim=2)
            return batch_dets, labels