File size: 11,042 Bytes
0702ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Prompt-Segment-Anything
This is an implementation of zero-shot instance segmentation using [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks to the authors of Segment Anything for their wonderful work! 

This repository is based on [MMDetection](https://github.com/open-mmlab/mmdetection) and includes some code from [H-Deformable-DETR](https://github.com/HDETR/H-Deformable-DETR) and [FocalNet-DINO](https://github.com/FocalNet/FocalNet-DINO).

![example1](assets/example1.jpg)

## News

**2023.04.12** Multimask output mode and cascade prompt mode is available now.

**2023.04.11** Our [demo](https://huggingface.co/spaces/rockeycoss/Prompt-Segment-Anything-Demo) is available now. Please feel free to check it out.

**2023.04.11** [Swin-L+H-Deformable-DETR + SAM](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-h.py)/[FocalNet-L+DINO + SAM](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-h.py) achieves strong COCO instance segmentation results: mask AP=46.8/49.1 by simply prompting SAM with boxes predicted by Swin-L+H-Deformable-DETR/FocalNet-L+DINO. (mask AP=46.5 based on ViTDet)๐Ÿบ

## Catalog

- [x] Support Swin-L+H-Deformable-DETR+SAM
- [x] Support FocalNet-L+DINO+SAM
- [x] Support R50+H-Deformable-DETR+SAM/Swin-T+H-Deformable-DETR
- [x] Support HuggingFace gradio demo
- [x] Support cascade prompts (box prompt + mask prompt)

## Box-as-Prompt Results

|         Detector         |    SAM    |    multimask ouput    | Detector's Box AP | Mask AP |                            Config                            |
| :---------------------: | :-------: | :---------------: | :-----: | :----------------------------------------------------------: | ----------------------- |
|  R50+H-Deformable-DETR   | sam-vit-b | :x: |       50.0        |  38.2   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/r50-hdetr_sam-vit-b.py) |
| R50+H-Deformable-DETR | sam-vit-b | :heavy_check_mark: | 50.0 | 39.9 | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/r50-hdetr_sam-vit-b_best-in-multi.py) |
|  R50+H-Deformable-DETR   | sam-vit-l | :x: |       50.0        |  41.5   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/r50-hdetr_sam-vit-l.py) |
| Swin-T+H-Deformable-DETR | sam-vit-b | :x: |       53.2        |  40.0   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-t-hdetr_sam-vit-b.py) |
| Swin-T+H-Deformable-DETR | sam-vit-l | :x: |       53.2        |  43.5   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-t-hdetr_sam-vit-l.py) |
| Swin-L+H-Deformable-DETR | sam-vit-b | :x: |       58.0        |  42.5   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-b.py) |
| Swin-L+H-Deformable-DETR | sam-vit-l | :x: |       58.0        |  46.3   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py) |
| Swin-L+H-Deformable-DETR | sam-vit-h | :x: |       58.0        |  46.8   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-h.py) |
|     FocalNet-L+DINO      | sam-vit-b | :x: |       63.2        |  44.5   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-b.py) |
|     FocalNet-L+DINO      | sam-vit-l | :x: |       63.2        |  48.6   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py) |
|     FocalNet-L+DINO      | sam-vit-h | :x: |       63.2        |  49.1   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/swin-l-hdetr_sam-vit-h.py) |

## Cascade-Prompt Results

|       Detector        |    SAM    |  multimask ouput   | Detector's Box AP | Mask AP | Config                                                       |
| :-------------------: | :-------: | :----------------: | :---------------: | :-----: | ------------------------------------------------------------ |
| R50+H-Deformable-DETR | sam-vit-b |        :x:         |       50.0        |  38.8   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/r50-hdetr_sam-vit-b_cascade.py) |
| R50+H-Deformable-DETR | sam-vit-b | :heavy_check_mark: |       50.0        |  40.5   | [config](https://github.com/RockeyCoss/Instance-Segment-Anything/blob/master/projects/configs/hdetr/r50-hdetr_sam-vit-b_best-in-multi_cascade.py) |

***Note***

**multimask ouput**: If multimask output is :heavy_check_mark:, SAM will predict three masks for each prompt, and the segmentation result will be the one with the highest predicted IoU. Otherwise, if multimask output is :x:, SAM will return only one mask for each prompt, which will be used as the segmentation result.

**cascade-prompt**: In the cascade-prompt setting, the segmentation process involves two stages. In the first stage, a coarse mask is predicted with a bounding box prompt. The second stage then utilizes both the bounding box and the coarse mask as prompts to predict the final segmentation result. Note that if multimask output is :heavy_check_mark:, the first stage will predict three coarse masks, and the second stage will use the mask with the highest predicted IoU as the prompt.

## Installation

๐Ÿบ๐Ÿบ๐Ÿบ Add dockerhub enviroment 

```
docker pull kxqt/prompt-sam-torch1.12-cuda11.6:20230410
nvidia-docker run -it --shm-size=4096m -v {your_path}:{path_in_docker} kxqt/prompt-sam-torch1.12-cuda11.6:20230410
```

We test the models under `python=3.7.10,pytorch=1.10.2,cuda=10.2`. Other versions might be available as well.

1. Clone this repository

```
git clone https://github.com/RockeyCoss/Instance-Segment-Anything
cd Instance-Segment-Anything
```

2. Install PyTorch

```bash
# an example
pip install torch torchvision
```

3. Install MMCV

```
pip install -U openmim
mim install "mmcv>=2.0.0"
```

4. Install MMDetection's requirements

```
pip install -r requirements.txt
```

5. Compile CUDA operators

```bash
cd projects/instance_segment_anything/ops
python setup.py build install
cd ../../..
```

## Prepare COCO Dataset

Please refer to [data preparation](https://mmdetection.readthedocs.io/en/latest/user_guides/dataset_prepare.html).

## Prepare Checkpoints

1. Install wget

```
pip install wget
```

2. SAM checkpoints

```bash
mkdir ckpt
cd ckpt
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
cd ..
```

3. Here are the checkpoints for the detection models. You can download only the checkpoints you need.

```bash
# R50+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o r50_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/r50_hdetr.pth ckpt/r50_hdetr.pth

# Swin-T+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o swin_t_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/swin_t_hdetr.pth ckpt/swin_t_hdetr.pth

# Swin-L+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/decay0.05_drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o swin_l_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/swin_l_hdetr.pth ckpt/swin_l_hdetr.pth

# FocalNet-L+DINO
cd ckpt
python -m wget https://projects4jw.blob.core.windows.net/focalnet/release/detection/focalnet_large_fl4_o365_finetuned_on_coco.pth -o focalnet_l_dino.pth
cd ..
python tools/convert_ckpt.py ckpt/focalnet_l_dino.pth ckpt/focalnet_l_dino.pth
```

## Run Evaluation

1. Evaluate Metrics

```bash
# single GPU
python tools/test.py path/to/the/config/file --eval segm
# multiple GPUs
bash tools/dist_test.sh path/to/the/config/file num_gpus --eval segm
```

2. Visualize Segmentation Results

```bash
python tools/test.py path/to/the/config/file --show-dir path/to/the/visualization/results
```
## Gradio Demo

We also provide a UI for displaying the segmentation results that is built with gradio. To launch the demo, simply run the following command in a terminal:

```bash
pip install gradio
python app.py
```

This demo is also hosted on HuggingFace [here](https://huggingface.co/spaces/rockeycoss/Prompt-Segment-Anything-Demo).

## More Segmentation Examples

![example2](assets/example2.jpg)
![example3](assets/example3.jpg)
![example4](assets/example4.jpg)
![example5](assets/example5.jpg)

## Citation

**Segment Anything**

```latex
@article{kirillov2023segany,
  title={Segment Anything}, 
  author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
  journal={arXiv:2304.02643},
  year={2023}
}
```
**H-Deformable-DETR**

```latex
@article{jia2022detrs,
  title={DETRs with Hybrid Matching},
  author={Jia, Ding and Yuan, Yuhui and He, Haodi and Wu, Xiaopei and Yu, Haojun and Lin, Weihong and Sun, Lei and Zhang, Chao and Hu, Han},
  journal={arXiv preprint arXiv:2207.13080},
  year={2022}
}
```
**Swin Transformer**

```latex
@inproceedings{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
```
**DINO**

```latex
@misc{zhang2022dino,
      title={DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection}, 
      author={Hao Zhang and Feng Li and Shilong Liu and Lei Zhang and Hang Su and Jun Zhu and Lionel M. Ni and Heung-Yeung Shum},
      year={2022},
      eprint={2203.03605},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
**FocalNet**

```latex
@misc{yang2022focalnet,  
  author = {Yang, Jianwei and Li, Chunyuan and Dai, Xiyang and Yuan, Lu and Gao, Jianfeng},
  title = {Focal Modulation Networks},
  publisher = {arXiv},
  year = {2022},
}
```