Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor | |
| from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
| from datasets import load_dataset | |
| # Check if a GPU is available and set the device | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # Load the Whisper ASR model | |
| whisper_model_id = "riteshkr/quantized-whisper-large-v3" | |
| whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_id) | |
| whisper_processor = WhisperProcessor.from_pretrained(whisper_model_id) | |
| # Set the language to English using forced_decoder_ids | |
| forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(language="english", task="transcribe") | |
| whisper_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=whisper_model, | |
| tokenizer=whisper_processor.tokenizer, | |
| feature_extractor=whisper_processor.feature_extractor, | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| # Load the SpeechT5 TTS model | |
| tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
| tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
| tts_model.to(device) | |
| vocoder.to(device) | |
| # Load speaker embeddings for TTS | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device) | |
| # Set target data type and max range for speech | |
| target_dtype = np.int16 | |
| max_range = np.iinfo(target_dtype).max | |
| # Define the transcription function (Whisper ASR) | |
| def transcribe_speech(filepath): | |
| batch_size = 16 if torch.cuda.is_available() else 4 | |
| output = whisper_pipe( | |
| filepath, | |
| max_new_tokens=256, | |
| generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, | |
| chunk_length_s=30, | |
| batch_size=batch_size, | |
| ) | |
| return output["text"] | |
| # Define the synthesis function (SpeechT5 TTS) | |
| def synthesise(text): | |
| inputs = tts_processor(text=text, return_tensors="pt") | |
| speech = tts_model.generate_speech( | |
| inputs["input_ids"].to(device), speaker_embeddings, vocoder=vocoder | |
| ) | |
| return speech.cpu() | |
| # Define the speech-to-speech translation function | |
| def speech_to_speech_translation(audio): | |
| # Transcribe speech | |
| translated_text = transcribe_speech(audio) | |
| # Synthesize speech | |
| synthesised_speech = synthesise(translated_text) | |
| # Convert speech to desired format | |
| synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
| return 16000, synthesised_speech | |
| # Define the Gradio interfaces for microphone input and file upload | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| ) | |
| # Define the Gradio interfaces for transcription | |
| mic_transcribe = gr.Interface( | |
| fn=transcribe_speech, | |
| inputs=gr.Audio(sources="microphone", type="filepath"), | |
| outputs=gr.Textbox(), | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe_speech, | |
| inputs=gr.Audio(sources="upload", type="filepath"), | |
| outputs=gr.Textbox(), | |
| ) | |
| # Create the app using Gradio Blocks with tabbed interfaces | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.TabbedInterface( | |
| [ | |
| mic_transcribe, file_transcribe, # For transcription | |
| mic_translate, file_translate # For speech-to-speech translation | |
| ], | |
| [ | |
| "Transcribe Microphone", "Transcribe Audio File", | |
| "Translate Microphone", "Translate Audio File" | |
| ] | |
| ) | |
| # Launch the app with debugging enabled | |
| if __name__ == "__main__": | |
| demo.launch(debug=True, share=True) | |