risingodegua's picture
Add wine predictor app
63c9787
import gradio as gr
from sklearn.hub import HubLoader
hub = HubLoader("risingodegua/wine-quality-model", "sklearn_model.joblib")
model = hub.load()
def wine_quality_predictor(X):
'''Predicts the quality of wine
Parameters
----------
X : numpy, list
A list containing values used for prediction.
Returns
-------
List
The list of predicted values.
'''
return model.predict(X.to_numpy())
headers = [
"fixed acidity",
"volatile acidity",
"citric acid",
"residual sugar",
"chlorides",
"free sulfur dioxide",
"total sulfur dioxide",
"density",
"pH",
"sulphates",
"alcohol",
]
default = [
[7.4, 0.7, 0, 1.9, 0.076, 11, 34, 0.9978, 3.51, 0.56, 9.4],
[7.8, 0.88, 0, 2.6, 0.098, 25, 67, 0.9968, 3.2, 0.68, 9.8],
[7.8, 0.76, 0.04, 2.3, 0.092, 15, 54, 0.997, 3.26, 0.65, 9.8],
]
iface = gr.Interface(
wine_quality_predictor,
gr.inputs.Dataframe(
headers=headers,
default=default,
),
["numpy"],
description="Enter wine properties for prediction"
)
iface.launch()