Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from shutil import copyfile | |
| from typing import Optional, Tuple | |
| from tokenizers import processors | |
| from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | |
| from transformers.utils import is_sentencepiece_available, logging | |
| from transformers.utils.versions import require_version | |
| require_version("tokenizers>=0.13.3") | |
| if is_sentencepiece_available(): | |
| from .tokenization_llama import LlamaTokenizer | |
| else: | |
| LlamaTokenizer = None | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model", | |
| }, | |
| "tokenizer_file": { | |
| "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json", | |
| }, | |
| } | |
| B_INST, E_INST = "[INST]", "[/INST]" | |
| B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
| # fmt: off | |
| DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ | |
| answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ | |
| that your responses are socially unbiased and positive in nature. | |
| If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ | |
| correct. If you don't know the answer to a question, please don't share false information.""" | |
| # fmt: on | |
| class LlamaTokenizerFast(PreTrainedTokenizerFast): | |
| """ | |
| Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. | |
| This uses notably ByteFallback and no normalization. | |
| ``` | |
| from transformers import LlamaTokenizerFast | |
| tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") | |
| tokenizer.encode("Hello this is a test") | |
| >>> [1, 15043, 445, 338, 263, 1243] | |
| ``` | |
| If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or | |
| call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the | |
| values of the first token and final token of an encoded sequence will not be correct). For more details, checkout | |
| [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. | |
| This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should | |
| refer to this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (`str`): | |
| [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that | |
| contains the vocabulary necessary to instantiate a tokenizer. | |
| tokenizer_file (`str`): | |
| [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that | |
| contains everything needed to load the tokenizer. | |
| clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`): | |
| Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra | |
| spaces. | |
| bos_token (`str`, *optional*, defaults to `"<s>"`): | |
| The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
| eos_token (`str`, *optional*, defaults to `"</s>"`): | |
| The end of sequence token. | |
| unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| slow_tokenizer_class = LlamaTokenizer | |
| padding_side = "left" | |
| model_input_names = ["input_ids", "attention_mask"] | |
| def __init__( | |
| self, | |
| vocab_file=None, | |
| tokenizer_file=None, | |
| clean_up_tokenization_spaces=False, | |
| unk_token="<unk>", | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| add_bos_token=True, | |
| add_eos_token=False, | |
| use_default_system_prompt=True, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| vocab_file=vocab_file, | |
| tokenizer_file=tokenizer_file, | |
| clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
| unk_token=unk_token, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| use_default_system_prompt=use_default_system_prompt, | |
| **kwargs, | |
| ) | |
| self._add_bos_token = add_bos_token | |
| self._add_eos_token = add_eos_token | |
| self.update_post_processor() | |
| self.use_default_system_prompt = use_default_system_prompt | |
| self.vocab_file = vocab_file | |
| def can_save_slow_tokenizer(self) -> bool: | |
| return os.path.isfile(self.vocab_file) if self.vocab_file else False | |
| def update_post_processor(self): | |
| """ | |
| Updates the underlying post processor with the current `bos_token` and `eos_token`. | |
| """ | |
| bos = self.bos_token | |
| bos_token_id = self.bos_token_id | |
| eos = self.eos_token | |
| eos_token_id = self.eos_token_id | |
| single = f"{(bos+':0 ') * self.add_bos_token}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" | |
| pair = f"{single}{(' '+bos+':1') * self.add_bos_token} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" | |
| special_tokens = [] | |
| if self.add_bos_token: | |
| special_tokens.append((bos, bos_token_id)) | |
| if self.add_eos_token: | |
| special_tokens.append((eos, eos_token_id)) | |
| self._tokenizer.post_processor = processors.TemplateProcessing( | |
| single=single, pair=pair, special_tokens=special_tokens | |
| ) | |
| def add_eos_token(self): | |
| return self._add_eos_token | |
| def add_bos_token(self): | |
| return self._add_bos_token | |
| def add_eos_token(self, value): | |
| self._add_eos_token = value | |
| self.update_post_processor() | |
| def add_bos_token(self, value): | |
| self._add_bos_token = value | |
| self.update_post_processor() | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not self.can_save_slow_tokenizer: | |
| raise ValueError( | |
| "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " | |
| "tokenizer." | |
| ) | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| out_vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
| copyfile(self.vocab_file, out_vocab_file) | |
| return (out_vocab_file,) | |
| # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template | |
| def default_chat_template(self): | |
| """ | |
| LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. | |
| Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict | |
| user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering | |
| rather than needing special tokens. The system message is partly 'embedded' in the first user message, which | |
| results in an unusual token ordering when it is present. This template should definitely be changed if you wish | |
| to fine-tune a model with more flexible role ordering! | |
| The output should look something like: | |
| <bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos> <bos>[INST] Prompt [/INST] Answer <eos> | |
| <bos>[INST] Prompt [/INST] | |
| """ | |
| template = ( | |
| "{% if messages[0]['role'] == 'system' %}" | |
| "{% set loop_messages = messages[1:] %}" # Extract system message if it's present | |
| "{% set system_message = messages[0]['content'] %}" | |
| "{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" | |
| "{% set loop_messages = messages %}" # Or use the default system message if the flag is set | |
| "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" | |
| "{% else %}" | |
| "{% set loop_messages = messages %}" | |
| "{% set system_message = false %}" | |
| "{% endif %}" | |
| "{% for message in loop_messages %}" # Loop over all non-system messages | |
| "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" | |
| "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" | |
| "{% endif %}" | |
| "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message | |
| "{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" | |
| "{% else %}" | |
| "{% set content = message['content'] %}" | |
| "{% endif %}" | |
| "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way | |
| "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" | |
| "{% elif message['role'] == 'system' %}" | |
| "{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" | |
| "{% elif message['role'] == 'assistant' %}" | |
| "{{ ' ' + content.strip() + ' ' + eos_token }}" | |
| "{% endif %}" | |
| "{% endfor %}" | |
| ) | |
| template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") | |
| default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") | |
| template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) | |
| return template | |
| # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers | |
| # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens | |
| def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
| bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
| eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
| output = bos_token_id + token_ids_0 + eos_token_id | |
| if token_ids_1 is not None: | |
| output = output + bos_token_id + token_ids_1 + eos_token_id | |
| return output | |