Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
| # and OPT implementations in this library. It has been modified from its | |
| # original forms to accommodate minor architectural differences compared | |
| # to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch LLaMA model.""" | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS | |
| from transformers.utils import ( | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_flash_attn_available, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from .configuration_llama import LlamaConfig | |
| if is_flash_attn_available(): | |
| from flash_attn import flash_attn_func, flash_attn_varlen_func | |
| from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "LlamaConfig" | |
| def _get_unpad_data(padding_mask): | |
| seqlens_in_batch = padding_mask.sum(dim=-1, dtype=torch.int32) | |
| indices = torch.nonzero(padding_mask.flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| ) | |
| # Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
| ): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
| mask_cond = torch.arange(mask.size(-1), device=device) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| # Copied from transformers.models.bart.modeling_bart._expand_mask | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
| class LlamaRMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| LlamaRMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm) | |
| class LlamaRotaryEmbedding(nn.Module): | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
| super().__init__() | |
| self.dim = dim | |
| self.max_position_embeddings = max_position_embeddings | |
| self.base = base | |
| inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| # Build here to make `torch.jit.trace` work. | |
| self._set_cos_sin_cache( | |
| seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
| ) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
| def forward(self, x, seq_len=None): | |
| # x: [bs, num_attention_heads, seq_len, head_size] | |
| if seq_len > self.max_seq_len_cached: | |
| self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
| return ( | |
| self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
| self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
| ) | |
| class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
| """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| t = t / self.scaling_factor | |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
| class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
| """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
| self.scaling_factor = scaling_factor | |
| super().__init__(dim, max_position_embeddings, base, device) | |
| def _set_cos_sin_cache(self, seq_len, device, dtype): | |
| self.max_seq_len_cached = seq_len | |
| if seq_len > self.max_position_embeddings: | |
| base = self.base * ( | |
| (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
| ) ** (self.dim / (self.dim - 2)) | |
| inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
| # Different from paper, but it uses a different permutation in order to obtain the same calculation | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
| # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
| cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
| sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
| cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
| sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| class LlamaMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, x): | |
| if self.config.pretraining_tp > 1: | |
| slice = self.intermediate_size // self.config.pretraining_tp | |
| gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | |
| up_proj_slices = self.up_proj.weight.split(slice, dim=0) | |
| down_proj_slices = self.down_proj.weight.split(slice, dim=1) | |
| gate_proj = torch.cat( | |
| [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 | |
| ) | |
| up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) | |
| intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | |
| down_proj = [ | |
| F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) | |
| ] | |
| down_proj = sum(down_proj) | |
| else: | |
| down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| return down_proj | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| class LlamaAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config: LlamaConfig): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
| f" and `num_heads`: {self.num_heads})." | |
| ) | |
| self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | |
| self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) | |
| self._init_rope() | |
| def _init_rope(self): | |
| if self.config.rope_scaling is None: | |
| self.rotary_emb = LlamaRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| base=self.rope_theta, | |
| ) | |
| else: | |
| scaling_type = self.config.rope_scaling["type"] | |
| scaling_factor = self.config.rope_scaling["factor"] | |
| if scaling_type == "linear": | |
| self.rotary_emb = LlamaLinearScalingRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| elif scaling_type == "dynamic": | |
| self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=self.max_position_embeddings, | |
| scaling_factor=scaling_factor, | |
| base=self.rope_theta, | |
| ) | |
| else: | |
| raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| padding_mask: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| if self.config.pretraining_tp > 1: | |
| key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp | |
| query_slices = self.q_proj.weight.split( | |
| (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 | |
| ) | |
| key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | |
| value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | |
| query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] | |
| query_states = torch.cat(query_states, dim=-1) | |
| key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] | |
| key_states = torch.cat(key_states, dim=-1) | |
| value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] | |
| value_states = torch.cat(value_states, dim=-1) | |
| else: | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = key_states.shape[-2] | |
| if past_key_value is not None: | |
| kv_seq_len += past_key_value[0].shape[-2] | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| if past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| past_key_value = (key_states, value_states) if use_cache else None | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights + attention_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| if self.config.pretraining_tp > 1: | |
| attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) | |
| o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) | |
| attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) | |
| else: | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class LlamaFlashAttention2(LlamaAttention): | |
| """ | |
| Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| padding_mask: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| # LlamaFlashAttention2 attention does not support output_attentions | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dime x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| kv_seq_len = key_states.shape[-2] | |
| if past_key_value is not None: | |
| kv_seq_len += past_key_value[0].shape[-2] | |
| cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
| if past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| past_key_value = (key_states, value_states) if use_cache else None | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| # TODO: llama does not have dropout in the config?? | |
| # It is recommended to use dropout with FA according to the docs | |
| # when training. | |
| dropout_rate = 0.0 # if not self.training else self.attn_dropout | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in float16 just to be sure everything works as expected. | |
| # This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
| # in fp32. (LlamaRMSNorm handles it correctly) | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| logger.warning_once( | |
| "The input hidden states seems to be silently casted in float32, this might be related to" | |
| " the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| " float16." | |
| ) | |
| query_states = query_states.to(torch.float16) | |
| key_states = key_states.to(torch.float16) | |
| value_states = value_states.to(torch.float16) | |
| attn_output = self._flash_attention_forward( | |
| query_states, key_states, value_states, padding_mask, q_len, dropout=dropout_rate | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| def _flash_attention_forward( | |
| self, query_states, key_states, value_states, padding_mask, query_length, dropout=0.0, softmax_scale=None | |
| ): | |
| """ | |
| Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
| first unpad the input, then computes the attention scores and pad the final attention scores. | |
| Args: | |
| query_states (`torch.Tensor`): | |
| Input query states to be passed to Flash Attention API | |
| key_states (`torch.Tensor`): | |
| Input key states to be passed to Flash Attention API | |
| value_states (`torch.Tensor`): | |
| Input value states to be passed to Flash Attention API | |
| padding_mask (`torch.Tensor`): | |
| The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
| position of padding tokens and 1 for the position of non-padding tokens. | |
| dropout (`int`, *optional*): | |
| Attention dropout | |
| softmax_scale (`float`, *optional*): | |
| The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
| """ | |
| # Contains at least one padding token in the sequence | |
| if padding_mask is not None: | |
| batch_size = query_states.shape[0] | |
| query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
| query_states, key_states, value_states, padding_mask, query_length | |
| ) | |
| cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
| max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
| attn_output_unpad = flash_attn_varlen_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens_q=cu_seqlens_q, | |
| cu_seqlens_k=cu_seqlens_k, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_k, | |
| dropout_p=dropout, | |
| softmax_scale=softmax_scale, | |
| causal=True, | |
| ) | |
| attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
| else: | |
| attn_output = flash_attn_func( | |
| query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=True | |
| ) | |
| return attn_output | |
| def _upad_input(self, query_layer, key_layer, value_layer, padding_mask, query_length): | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(padding_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis( | |
| key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| if query_length == kv_seq_len: | |
| query_layer = index_first_axis( | |
| query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
| ) | |
| cu_seqlens_q = cu_seqlens_k | |
| max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
| indices_q = indices_k | |
| elif query_length == 1: | |
| max_seqlen_in_batch_q = 1 | |
| cu_seqlens_q = torch.arange( | |
| batch_size + 1, dtype=torch.int32, device=query_layer.device | |
| ) # There is a memcpy here, that is very bad. | |
| indices_q = cu_seqlens_q[:-1] | |
| query_layer = query_layer.squeeze(1) | |
| else: | |
| # The -q_len: slice assumes left padding. | |
| padding_mask = padding_mask[:, -query_length:] | |
| query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, padding_mask) | |
| return ( | |
| query_layer, | |
| key_layer, | |
| value_layer, | |
| indices_q, | |
| (cu_seqlens_q, cu_seqlens_k), | |
| (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
| ) | |
| class LlamaDecoderLayer(nn.Module): | |
| def __init__(self, config: LlamaConfig): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = ( | |
| LlamaAttention(config=config) | |
| if not getattr(config, "_flash_attn_2_enabled", False) | |
| else LlamaFlashAttention2(config=config) | |
| ) | |
| self.mlp = LlamaMLP(config) | |
| self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| padding_mask: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| padding_mask=padding_mask, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| LLAMA_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`LlamaConfig`]): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| class LlamaPreTrainedModel(PreTrainedModel): | |
| config_class = LlamaConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["LlamaDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _supports_flash_attn_2 = True | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, LlamaModel): | |
| module.gradient_checkpointing = value | |
| LLAMA_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
| `past_key_values`). | |
| If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
| and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
| information on the default strategy. | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.n_positions - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
| Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
| `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
| `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
| have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
| of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class LlamaModel(LlamaPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] | |
| Args: | |
| config: LlamaConfig | |
| """ | |
| def __init__(self, config: LlamaConfig): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
| def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, | |
| inputs_embeds.dtype, | |
| device=inputs_embeds.device, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
| inputs_embeds.device | |
| ) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values is not None: | |
| past_key_values_length = past_key_values[0][0].shape[2] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| if position_ids is None: | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| position_ids = torch.arange( | |
| past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
| ) | |
| position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
| else: | |
| position_ids = position_ids.view(-1, seq_length).long() | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| # embed positions | |
| if attention_mask is None: | |
| attention_mask = torch.ones( | |
| (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | |
| ) | |
| padding_mask = None | |
| else: | |
| if 0 in attention_mask: | |
| padding_mask = attention_mask | |
| else: | |
| padding_mask = None | |
| attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
| ) | |
| hidden_states = inputs_embeds | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = () if use_cache else None | |
| for idx, decoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, past_key_value, output_attentions, padding_mask=padding_mask) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| padding_mask=padding_mask, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class LlamaForCausalLM(LlamaPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = LlamaModel(config) | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| r""" | |
| Args: | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
| config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
| (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import AutoTokenizer, LlamaForCausalLM | |
| >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
| >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
| >>> prompt = "Hey, are you conscious? Can you talk to me?" | |
| >>> inputs = tokenizer(prompt, return_tensors="pt") | |
| >>> # Generate | |
| >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
| >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
| ```""" | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] | |
| if self.config.pretraining_tp > 1: | |
| lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) | |
| logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] | |
| logits = torch.cat(logits, dim=-1) | |
| else: | |
| logits = self.lm_head(hidden_states) | |
| logits = logits.float() | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
| ): | |
| if past_key_values: | |
| input_ids = input_ids[:, -1:] | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -1].unsqueeze(-1) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "position_ids": position_ids, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += ( | |
| tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
| ) | |
| return reordered_past | |
| class LlamaForSequenceClassification(LlamaPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.model = LlamaModel(config) | |
| self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size = input_ids.shape[0] | |
| else: | |
| batch_size = inputs_embeds.shape[0] | |
| if self.config.pad_token_id is None and batch_size != 1: | |
| raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( | |
| logits.device | |
| ) | |
| else: | |
| sequence_lengths = -1 | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |