Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import numpy as np | |
# import the model | |
pipe = pickle.load(open('pipe.pkl','rb')) | |
df = pickle.load(open('df.pkl','rb')) | |
st.title("Smartphone Price Predictor") | |
# Main page content | |
st.image('mobile.png', use_column_width=True) | |
# brand | |
Company = st.selectbox('Brand',df['Brand'].unique()) | |
# year | |
Released_Year = st.selectbox('Released Year',df['Released Year'].unique()) | |
# OS | |
Operating_System = st.selectbox('OS',df['OS'].unique()) | |
# size | |
Display = st.number_input('Display (Inches)') | |
# Camera | |
Camera = st.number_input('Camera (MP)') | |
# resolution | |
Camera_Resolution= st.selectbox('Camera Resolution',df['Camera Resolution'].unique()) | |
# Ram | |
Ram = st.number_input('Ram (GB)') | |
# Battery | |
Battery = st.number_input('Battery (mAh)') | |
if st.button('Predict Price'): | |
query = np.array([Company, Released_Year, Operating_System, Display, Camera, Camera_Resolution, Ram, Battery]) | |
query = query.reshape(1, -1) | |
st.title("The predicted price of this configuration mobile is " + str(int(np.exp(pipe.predict(query)[0]))) + ' TK.') | |