import gradio as gr from transformers import AutoModel, AutoProcessor, AutoTokenizer import torch from PIL import Image import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode # ImageNet constants IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) # Load model and processor model_name = 'rinkhanh000/Vintern-ViMemeCap' model = AutoModel.from_pretrained( model_name, torch_dtype=torch.float32, # Use float32 for CPU low_cpu_mem_usage=True, trust_remote_code=True ).eval() # No .cuda() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # Prediction function def predict_from_prompt_and_image(prompt, image): if not prompt or not image: return {"Error": "Please provide both a prompt and an image"} try: generation_config = dict(max_new_tokens=512, do_sample=False, num_beams=3, repetition_penalty=3.5) question = prompt.strip() pixel_values = load_image(image, max_num=6).to(torch.float32) # Use float32 for CPU response = model.chat(tokenizer, pixel_values, question, generation_config) return {response} except Exception as e: return {"Error": f"Failed to process: {str(e)}"} # Gradio interface demo = gr.Interface( fn=predict_from_prompt_and_image, inputs=[ gr.Textbox(label="Enter Prompt"), gr.Image(label="Upload Image", type="pil") ], outputs=gr.Textbox(label="Generated Caption"), title="ViMemeCap", allow_flagging="never" ) # Launch the interface demo.launch()