Spaces:
Build error
Build error
Commit
·
3f1b507
1
Parent(s):
69f57e9
Add application file
Browse files- app.py +89 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# ImageNet constants (not used in this code, kept for reference)
|
9 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
+
|
12 |
+
# Load model and processor
|
13 |
+
model_name = "rinkhanh000/Qwen2.5VL-7B_ViMemeCap"
|
14 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
17 |
+
trust_remote_code=True
|
18 |
+
).eval() # No device_map or cuda
|
19 |
+
|
20 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
21 |
+
|
22 |
+
# Prediction function
|
23 |
+
def predict_from_prompt_and_image(prompt, image):
|
24 |
+
if not prompt or not image:
|
25 |
+
return {"Error": "Please provide both a prompt and an image"}
|
26 |
+
try:
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{
|
32 |
+
"type": "image",
|
33 |
+
"image": image # PIL image from Gradio
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"type": "text",
|
37 |
+
"text": prompt # User's text input
|
38 |
+
}
|
39 |
+
]
|
40 |
+
}
|
41 |
+
]
|
42 |
+
|
43 |
+
# Prepare inputs for inference
|
44 |
+
text = processor.apply_chat_template(
|
45 |
+
messages, tokenize=False, add_generation_prompt=True
|
46 |
+
)
|
47 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
48 |
+
inputs = processor(
|
49 |
+
text=[text],
|
50 |
+
images=image_inputs,
|
51 |
+
videos=video_inputs,
|
52 |
+
padding=True,
|
53 |
+
return_tensors="pt"
|
54 |
+
)
|
55 |
+
# No .to("cuda") - keep on CPU
|
56 |
+
|
57 |
+
# Generate response
|
58 |
+
generation_config = {
|
59 |
+
"max_new_tokens": 512,
|
60 |
+
"do_sample": False, # Enable beam search
|
61 |
+
"num_beams": 3, # 3 beams
|
62 |
+
"repetition_penalty": 3.5
|
63 |
+
}
|
64 |
+
generated_ids = model.generate(**inputs, **generation_config)
|
65 |
+
generated_ids_trimmed = [
|
66 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
67 |
+
]
|
68 |
+
response = processor.batch_decode(
|
69 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
70 |
+
)[0]
|
71 |
+
return response
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return {"Error": f"Failed to process: {str(e)}"}
|
75 |
+
|
76 |
+
# Gradio interface
|
77 |
+
demo = gr.Interface(
|
78 |
+
fn=predict_from_prompt_and_image,
|
79 |
+
inputs=[
|
80 |
+
gr.Textbox(label="Enter Prompt"),
|
81 |
+
gr.Image(label="Upload Image", type="pil")
|
82 |
+
],
|
83 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
84 |
+
title="ViMemeCap",
|
85 |
+
allow_flagging="never"
|
86 |
+
)
|
87 |
+
|
88 |
+
# Launch the interface
|
89 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
pillow
|
5 |
+
torchvision
|
6 |
+
qwen-vl-utils
|