Spaces:
Build error
Build error
Commit
·
35ccbb5
1
Parent(s):
3f1b507
test
Browse files- app.py +75 -54
- requirements.txt +5 -6
app.py
CHANGED
@@ -1,75 +1,96 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoTokenizer
|
3 |
-
from qwen_vl_utils import process_vision_info
|
4 |
-
from transformers import Qwen2_5_VLForConditionalGeneration
|
5 |
import torch
|
6 |
from PIL import Image
|
|
|
|
|
7 |
|
8 |
-
# ImageNet constants
|
9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
|
12 |
# Load model and processor
|
13 |
-
model_name =
|
14 |
-
model =
|
15 |
model_name,
|
16 |
torch_dtype=torch.float32, # Use float32 for CPU
|
|
|
17 |
trust_remote_code=True
|
18 |
-
).eval() # No
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Prediction function
|
23 |
def predict_from_prompt_and_image(prompt, image):
|
24 |
if not prompt or not image:
|
25 |
return {"Error": "Please provide both a prompt and an image"}
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"type": "image",
|
33 |
-
"image": image # PIL image from Gradio
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"type": "text",
|
37 |
-
"text": prompt # User's text input
|
38 |
-
}
|
39 |
-
]
|
40 |
-
}
|
41 |
-
]
|
42 |
-
|
43 |
-
# Prepare inputs for inference
|
44 |
-
text = processor.apply_chat_template(
|
45 |
-
messages, tokenize=False, add_generation_prompt=True
|
46 |
-
)
|
47 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
48 |
-
inputs = processor(
|
49 |
-
text=[text],
|
50 |
-
images=image_inputs,
|
51 |
-
videos=video_inputs,
|
52 |
-
padding=True,
|
53 |
-
return_tensors="pt"
|
54 |
-
)
|
55 |
-
# No .to("cuda") - keep on CPU
|
56 |
-
|
57 |
-
# Generate response
|
58 |
-
generation_config = {
|
59 |
-
"max_new_tokens": 512,
|
60 |
-
"do_sample": False, # Enable beam search
|
61 |
-
"num_beams": 3, # 3 beams
|
62 |
-
"repetition_penalty": 3.5
|
63 |
-
}
|
64 |
-
generated_ids = model.generate(**inputs, **generation_config)
|
65 |
-
generated_ids_trimmed = [
|
66 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
67 |
-
]
|
68 |
-
response = processor.batch_decode(
|
69 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
70 |
-
)[0]
|
71 |
-
return response
|
72 |
-
|
73 |
except Exception as e:
|
74 |
return {"Error": f"Failed to process: {str(e)}"}
|
75 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoProcessor, AutoTokenizer
|
|
|
|
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
import torchvision.transforms as T
|
6 |
+
from torchvision.transforms.functional import InterpolationMode
|
7 |
|
8 |
+
# ImageNet constants
|
9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
|
12 |
# Load model and processor
|
13 |
+
model_name = 'rinkhanh000/Vintern-ViMemeCap'
|
14 |
+
model = AutoModel.from_pretrained(
|
15 |
model_name,
|
16 |
torch_dtype=torch.float32, # Use float32 for CPU
|
17 |
+
low_cpu_mem_usage=True,
|
18 |
trust_remote_code=True
|
19 |
+
).eval() # No .cuda()
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
|
21 |
|
22 |
+
def build_transform(input_size):
|
23 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
24 |
+
transform = T.Compose([
|
25 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
26 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
27 |
+
T.ToTensor(),
|
28 |
+
T.Normalize(mean=MEAN, std=STD)
|
29 |
+
])
|
30 |
+
return transform
|
31 |
+
|
32 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
33 |
+
best_ratio_diff = float('inf')
|
34 |
+
best_ratio = (1, 1)
|
35 |
+
area = width * height
|
36 |
+
for ratio in target_ratios:
|
37 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
38 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
39 |
+
if ratio_diff < best_ratio_diff:
|
40 |
+
best_ratio_diff = ratio_diff
|
41 |
+
best_ratio = ratio
|
42 |
+
elif ratio_diff == best_ratio_diff:
|
43 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
44 |
+
best_ratio = ratio
|
45 |
+
return best_ratio
|
46 |
+
|
47 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
48 |
+
orig_width, orig_height = image.size
|
49 |
+
aspect_ratio = orig_width / orig_height
|
50 |
+
target_ratios = set(
|
51 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1)
|
52 |
+
if i * j <= max_num and i * j >= min_num)
|
53 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
54 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
55 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
56 |
+
target_width = image_size * target_aspect_ratio[0]
|
57 |
+
target_height = image_size * target_aspect_ratio[1]
|
58 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
59 |
+
resized_img = image.resize((target_width, target_height))
|
60 |
+
processed_images = []
|
61 |
+
for i in range(blocks):
|
62 |
+
box = (
|
63 |
+
(i % (target_width // image_size)) * image_size,
|
64 |
+
(i // (target_width // image_size)) * image_size,
|
65 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
66 |
+
((i // (target_width // image_size)) + 1) * image_size
|
67 |
+
)
|
68 |
+
split_img = resized_img.crop(box)
|
69 |
+
processed_images.append(split_img)
|
70 |
+
assert len(processed_images) == blocks
|
71 |
+
if use_thumbnail and len(processed_images) != 1:
|
72 |
+
thumbnail_img = image.resize((image_size, image_size))
|
73 |
+
processed_images.append(thumbnail_img)
|
74 |
+
return processed_images
|
75 |
+
|
76 |
+
def load_image(image_file, input_size=448, max_num=12):
|
77 |
+
image = Image.open(image_file).convert('RGB')
|
78 |
+
transform = build_transform(input_size=input_size)
|
79 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
80 |
+
pixel_values = [transform(image) for image in images]
|
81 |
+
pixel_values = torch.stack(pixel_values)
|
82 |
+
return pixel_values
|
83 |
|
84 |
# Prediction function
|
85 |
def predict_from_prompt_and_image(prompt, image):
|
86 |
if not prompt or not image:
|
87 |
return {"Error": "Please provide both a prompt and an image"}
|
88 |
try:
|
89 |
+
generation_config = dict(max_new_tokens=512, do_sample=False, num_beams=3, repetition_penalty=3.5)
|
90 |
+
question = prompt.strip()
|
91 |
+
pixel_values = load_image(image, max_num=6).to(torch.float32) # Use float32 for CPU
|
92 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
93 |
+
return {response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
except Exception as e:
|
95 |
return {"Error": f"Failed to process: {str(e)}"}
|
96 |
|
requirements.txt
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
-
gradio
|
2 |
-
transformers
|
3 |
-
torch
|
4 |
-
|
5 |
-
torchvision
|
6 |
-
qwen-vl-utils
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
transformers==4.44.2
|
3 |
+
torch==2.4.1
|
4 |
+
Pillow==10.4.0
|
5 |
+
torchvision==0.19.1
|
|