Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
# ImageNet constants | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
# Load model and processor | |
model_name = 'rinkhanh000/Vintern-ViMemeCap' | |
model = AutoModel.from_pretrained( | |
model_name, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
).eval() # No .cuda() | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file, input_size=448, max_num=12): | |
image = Image.open(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
# Prediction function | |
def predict_from_prompt_and_image(prompt, image): | |
if not prompt or not image: | |
return {"Error": "Please provide both a prompt and an image"} | |
try: | |
generation_config = dict(max_new_tokens=512, do_sample=False, num_beams=3, repetition_penalty=3.5) | |
question = prompt.strip() | |
pixel_values = load_image(image, max_num=6).to(torch.float32) # Use float32 for CPU | |
response = model.chat(tokenizer, pixel_values, question, generation_config) | |
return {response} | |
except Exception as e: | |
return {"Error": f"Failed to process: {str(e)}"} | |
# Gradio interface | |
demo = gr.Interface( | |
fn=predict_from_prompt_and_image, | |
inputs=[ | |
gr.Textbox(label="Enter Prompt"), | |
gr.Image(label="Upload Image", type="pil") | |
], | |
outputs=gr.Textbox(label="Generated Caption"), | |
title="ViMemeCap", | |
allow_flagging="never" | |
) | |
# Launch the interface | |
demo.launch() |