Spaces:
Runtime error
Runtime error
Riccardo Giorato
commited on
Commit
·
e44e44b
1
Parent(s):
3e7216e
update space
Browse files- README.md +1 -1
- app.py +46 -52
- requirements.txt +3 -2
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🎮
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.6
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
|
@@ -17,23 +17,43 @@ class Model:
|
|
| 17 |
models = [
|
| 18 |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
| 19 |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
| 20 |
-
Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style"),
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
last_mode = "txt2img"
|
| 24 |
-
current_model = models[0]
|
| 25 |
current_model_path = current_model.path
|
| 26 |
|
| 27 |
if is_colab:
|
| 28 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
| 29 |
|
| 30 |
else: # download all models
|
| 31 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
| 32 |
-
for model in models
|
| 33 |
try:
|
| 34 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
| 35 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
|
| 36 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
|
| 37 |
except:
|
| 38 |
models.remove(model)
|
| 39 |
pipe = models[0].pipe_t2i
|
|
@@ -71,8 +91,8 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
| 71 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 72 |
current_model_path = model_path
|
| 73 |
|
| 74 |
-
if is_colab or current_model ==
|
| 75 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
| 76 |
else:
|
| 77 |
pipe.to("cpu")
|
| 78 |
pipe = current_model.pipe_t2i
|
|
@@ -81,7 +101,7 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
| 81 |
pipe = pipe.to("cuda")
|
| 82 |
last_mode = "txt2img"
|
| 83 |
|
| 84 |
-
prompt = current_model.prefix + prompt
|
| 85 |
result = pipe(
|
| 86 |
prompt,
|
| 87 |
negative_prompt = neg_prompt,
|
|
@@ -102,8 +122,8 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
| 102 |
if model_path != current_model_path or last_mode != "img2img":
|
| 103 |
current_model_path = model_path
|
| 104 |
|
| 105 |
-
if is_colab or current_model ==
|
| 106 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
|
| 107 |
else:
|
| 108 |
pipe.to("cpu")
|
| 109 |
pipe = current_model.pipe_i2i
|
|
@@ -135,43 +155,12 @@ def replace_nsfw_images(results):
|
|
| 135 |
results.images[i] = Image.open("nsfw.png")
|
| 136 |
return results.images[0]
|
| 137 |
|
| 138 |
-
css = """
|
| 139 |
-
<style>
|
| 140 |
-
.finetuned-diffusion-div {
|
| 141 |
-
text-align: center;
|
| 142 |
-
max-width: 700px;
|
| 143 |
-
margin: 0 auto;
|
| 144 |
-
}
|
| 145 |
-
.finetuned-diffusion-div div {
|
| 146 |
-
display: inline-flex;
|
| 147 |
-
align-items: center;
|
| 148 |
-
gap: 0.8rem;
|
| 149 |
-
font-size: 1.75rem;
|
| 150 |
-
}
|
| 151 |
-
.finetuned-diffusion-div div h1 {
|
| 152 |
-
font-weight: 900;
|
| 153 |
-
margin-bottom: 7px;
|
| 154 |
-
}
|
| 155 |
-
.finetuned-diffusion-div p {
|
| 156 |
-
margin-bottom: 10px;
|
| 157 |
-
font-size: 94%;
|
| 158 |
-
}
|
| 159 |
-
.finetuned-diffusion-div p a {
|
| 160 |
-
text-decoration: underline;
|
| 161 |
-
}
|
| 162 |
-
.tabs {
|
| 163 |
-
margin-top: 0px;
|
| 164 |
-
margin-bottom: 0px;
|
| 165 |
-
}
|
| 166 |
-
#gallery {
|
| 167 |
-
min-height: 20rem;
|
| 168 |
-
}
|
| 169 |
-
</style>
|
| 170 |
"""
|
| 171 |
with gr.Blocks(css=css) as demo:
|
| 172 |
gr.HTML(
|
| 173 |
f"""
|
| 174 |
-
<div class="
|
| 175 |
<div>
|
| 176 |
<h1>Playground Diffusion</h1>
|
| 177 |
</div>
|
|
@@ -191,7 +180,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 191 |
|
| 192 |
with gr.Column(scale=55):
|
| 193 |
with gr.Group():
|
| 194 |
-
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
|
|
|
| 195 |
with gr.Row():
|
| 196 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
| 197 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
|
@@ -211,7 +201,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 211 |
|
| 212 |
with gr.Row():
|
| 213 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 214 |
-
steps = gr.Slider(label="Steps", value=
|
| 215 |
|
| 216 |
with gr.Row():
|
| 217 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
|
@@ -224,18 +214,22 @@ with gr.Blocks(css=css) as demo:
|
|
| 224 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
| 225 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
| 228 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
| 229 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
| 230 |
|
| 231 |
ex = gr.Examples([
|
| 232 |
[models[0].name, "Neon techno-magic robot with spear pierces an ancient beast, hyperrealism, no blur, 4k resolution, ultra detailed", 7.5, 50],
|
|
|
|
| 233 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
|
| 234 |
|
| 235 |
-
gr.
|
| 236 |
-
Models by
|
| 237 |
-
|
| 238 |
-
''')
|
| 239 |
|
| 240 |
if not is_colab:
|
| 241 |
demo.queue(concurrency_count=1)
|
|
|
|
| 1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
|
|
|
| 17 |
models = [
|
| 18 |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
| 19 |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
| 20 |
+
Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
|
| 21 |
+
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
| 22 |
+
Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
scheduler = DPMSolverMultistepScheduler(
|
| 26 |
+
beta_start=0.00085,
|
| 27 |
+
beta_end=0.012,
|
| 28 |
+
beta_schedule="scaled_linear",
|
| 29 |
+
num_train_timesteps=1000,
|
| 30 |
+
trained_betas=None,
|
| 31 |
+
predict_epsilon=True,
|
| 32 |
+
thresholding=False,
|
| 33 |
+
algorithm_type="dpmsolver++",
|
| 34 |
+
solver_type="midpoint",
|
| 35 |
+
lower_order_final=True,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
custom_model = None
|
| 39 |
+
if is_colab:
|
| 40 |
+
models.insert(0, Model("Custom model", "", ""))
|
| 41 |
+
custom_model = models[0]
|
| 42 |
|
| 43 |
last_mode = "txt2img"
|
| 44 |
+
current_model = models[1] if is_colab else models[0]
|
| 45 |
current_model_path = current_model.path
|
| 46 |
|
| 47 |
if is_colab:
|
| 48 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
|
| 49 |
|
| 50 |
else: # download all models
|
| 51 |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
| 52 |
+
for model in models:
|
| 53 |
try:
|
| 54 |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
| 55 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 56 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
| 57 |
except:
|
| 58 |
models.remove(model)
|
| 59 |
pipe = models[0].pipe_t2i
|
|
|
|
| 91 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 92 |
current_model_path = model_path
|
| 93 |
|
| 94 |
+
if is_colab or current_model == custom_model:
|
| 95 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
| 96 |
else:
|
| 97 |
pipe.to("cpu")
|
| 98 |
pipe = current_model.pipe_t2i
|
|
|
|
| 101 |
pipe = pipe.to("cuda")
|
| 102 |
last_mode = "txt2img"
|
| 103 |
|
| 104 |
+
prompt = current_model.prefix + prompt
|
| 105 |
result = pipe(
|
| 106 |
prompt,
|
| 107 |
negative_prompt = neg_prompt,
|
|
|
|
| 122 |
if model_path != current_model_path or last_mode != "img2img":
|
| 123 |
current_model_path = model_path
|
| 124 |
|
| 125 |
+
if is_colab or current_model == custom_model:
|
| 126 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
| 127 |
else:
|
| 128 |
pipe.to("cpu")
|
| 129 |
pipe = current_model.pipe_i2i
|
|
|
|
| 155 |
results.images[i] = Image.open("nsfw.png")
|
| 156 |
return results.images[0]
|
| 157 |
|
| 158 |
+
css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
"""
|
| 160 |
with gr.Blocks(css=css) as demo:
|
| 161 |
gr.HTML(
|
| 162 |
f"""
|
| 163 |
+
<div class="playground-diffusion-div">
|
| 164 |
<div>
|
| 165 |
<h1>Playground Diffusion</h1>
|
| 166 |
</div>
|
|
|
|
| 180 |
|
| 181 |
with gr.Column(scale=55):
|
| 182 |
with gr.Group():
|
| 183 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
| 184 |
+
|
| 185 |
with gr.Row():
|
| 186 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
| 187 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
|
|
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 204 |
+
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
| 205 |
|
| 206 |
with gr.Row():
|
| 207 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
|
|
|
| 214 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
| 215 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 216 |
|
| 217 |
+
if is_colab:
|
| 218 |
+
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
|
| 219 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
| 220 |
+
|
| 221 |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
| 222 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
| 223 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
| 224 |
|
| 225 |
ex = gr.Examples([
|
| 226 |
[models[0].name, "Neon techno-magic robot with spear pierces an ancient beast, hyperrealism, no blur, 4k resolution, ultra detailed", 7.5, 50],
|
| 227 |
+
[models[0].name, "halfturn portrait of a big crystal face of a beautiful abstract ancient Egyptian elderly shaman woman, made of iridescent golden crystals, half - turn, bottom view, ominous, intricate, studio, art by anthony macbain and greg rutkowski and alphonse mucha, concept art, 4k, sharp focus", 7.5, 25],
|
| 228 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
|
| 229 |
|
| 230 |
+
gr.HTML("""
|
| 231 |
+
<p>Models by <a href="https://huggingface.co/riccardogiorato">@riccardogiorato</a><br></p>
|
| 232 |
+
""")
|
|
|
|
| 233 |
|
| 234 |
if not is_colab:
|
| 235 |
demo.queue(concurrency_count=1)
|
requirements.txt
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
torch
|
| 3 |
-
diffusers
|
| 4 |
transformers
|
| 5 |
scipy
|
| 6 |
-
ftfy
|
|
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
torch
|
| 3 |
+
git+https://github.com/huggingface/diffusers.git
|
| 4 |
transformers
|
| 5 |
scipy
|
| 6 |
+
ftfy
|
| 7 |
+
accelerate
|