Spaces:
Running
Running
Update search_kwargs
Browse files
rag.py
CHANGED
@@ -29,8 +29,6 @@ def create_rag_pipeline(collection_name: str = "rag_collection"):
|
|
29 |
# Fine tuned embedding model
|
30 |
embedding_model = HuggingFaceEmbeddings(
|
31 |
model_name="ric9176/cjo-ft-v0",
|
32 |
-
model_kwargs={'device': 'cpu'}, # Or 'cuda' if using GPU
|
33 |
-
encode_kwargs={'normalize_embeddings': True} # Optional: normalize the embeddings
|
34 |
)
|
35 |
# embedding_dim = 1536 # Dimension for text-embedding-3-small
|
36 |
embedding_dim = 1024 # Dimension for Snowflake/snowflake-arctic-embed-l
|
@@ -63,7 +61,7 @@ def create_rag_pipeline(collection_name: str = "rag_collection"):
|
|
63 |
)
|
64 |
|
65 |
# Create retriever
|
66 |
-
retriever = vector_store.as_retriever(search_kwargs={"k":
|
67 |
|
68 |
return {
|
69 |
"vector_store": vector_store,
|
|
|
29 |
# Fine tuned embedding model
|
30 |
embedding_model = HuggingFaceEmbeddings(
|
31 |
model_name="ric9176/cjo-ft-v0",
|
|
|
|
|
32 |
)
|
33 |
# embedding_dim = 1536 # Dimension for text-embedding-3-small
|
34 |
embedding_dim = 1024 # Dimension for Snowflake/snowflake-arctic-embed-l
|
|
|
61 |
)
|
62 |
|
63 |
# Create retriever
|
64 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
65 |
|
66 |
return {
|
67 |
"vector_store": vector_store,
|