ric9176 commited on
Commit
106d0af
·
1 Parent(s): 1c32681

Remove unused files

Browse files
BuildingAChainlitApp.md DELETED
@@ -1,214 +0,0 @@
1
- # Building a Chainlit App
2
-
3
- What if we want to take our Week 1 Day 2 assignment - [Pythonic RAG](https://github.com/AI-Maker-Space/AIE4/tree/main/Week%201/Day%202) - and bring it out of the notebook?
4
-
5
- Well - we'll cover exactly that here!
6
-
7
- ## Anatomy of a Chainlit Application
8
-
9
- [Chainlit](https://docs.chainlit.io/get-started/overview) is a Python package similar to Streamlit that lets users write a backend and a front end in a single (or multiple) Python file(s). It is mainly used for prototyping LLM-based Chat Style Applications - though it is used in production in some settings with 1,000,000s of MAUs (Monthly Active Users).
10
-
11
- The primary method of customizing and interacting with the Chainlit UI is through a few critical [decorators](https://blog.hubspot.com/website/decorators-in-python).
12
-
13
- > NOTE: Simply put, the decorators (in Chainlit) are just ways we can "plug-in" to the functionality in Chainlit.
14
-
15
- We'll be concerning ourselves with three main scopes:
16
-
17
- 1. On application start - when we start the Chainlit application with a command like `chainlit run app.py`
18
- 2. On chat start - when a chat session starts (a user opens the web browser to the address hosting the application)
19
- 3. On message - when the users sends a message through the input text box in the Chainlit UI
20
-
21
- Let's dig into each scope and see what we're doing!
22
-
23
- ## On Application Start:
24
-
25
- The first thing you'll notice is that we have the traditional "wall of imports" this is to ensure we have everything we need to run our application.
26
-
27
- ```python
28
- import os
29
- from typing import List
30
- from chainlit.types import AskFileResponse
31
- from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
32
- from aimakerspace.openai_utils.prompts import (
33
- UserRolePrompt,
34
- SystemRolePrompt,
35
- AssistantRolePrompt,
36
- )
37
- from aimakerspace.openai_utils.embedding import EmbeddingModel
38
- from aimakerspace.vectordatabase import VectorDatabase
39
- from aimakerspace.openai_utils.chatmodel import ChatOpenAI
40
- import chainlit as cl
41
- ```
42
-
43
- Next up, we have some prompt templates. As all sessions will use the same prompt templates without modification, and we don't need these templates to be specific per template - we can set them up here - at the application scope.
44
-
45
- ```python
46
- system_template = """\
47
- Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
48
- system_role_prompt = SystemRolePrompt(system_template)
49
-
50
- user_prompt_template = """\
51
- Context:
52
- {context}
53
-
54
- Question:
55
- {question}
56
- """
57
- user_role_prompt = UserRolePrompt(user_prompt_template)
58
- ```
59
-
60
- > NOTE: You'll notice that these are the exact same prompt templates we used from the Pythonic RAG Notebook in Week 1 Day 2!
61
-
62
- Following that - we can create the Python Class definition for our RAG pipeline - or *chain*, as we'll refer to it in the rest of this walkthrough.
63
-
64
- Let's look at the definition first:
65
-
66
- ```python
67
- class RetrievalAugmentedQAPipeline:
68
- def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
69
- self.llm = llm
70
- self.vector_db_retriever = vector_db_retriever
71
-
72
- async def arun_pipeline(self, user_query: str):
73
- ### RETRIEVAL
74
- context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
75
-
76
- context_prompt = ""
77
- for context in context_list:
78
- context_prompt += context[0] + "\n"
79
-
80
- ### AUGMENTED
81
- formatted_system_prompt = system_role_prompt.create_message()
82
-
83
- formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
84
-
85
-
86
- ### GENERATION
87
- async def generate_response():
88
- async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
89
- yield chunk
90
-
91
- return {"response": generate_response(), "context": context_list}
92
- ```
93
-
94
- Notice a few things:
95
-
96
- 1. We have modified this `RetrievalAugmentedQAPipeline` from the initial notebook to support streaming.
97
- 2. In essence, our pipeline is *chaining* a few events together:
98
- 1. We take our user query, and chain it into our Vector Database to collect related chunks
99
- 2. We take those contexts and our user's questions and chain them into the prompt templates
100
- 3. We take that prompt template and chain it into our LLM call
101
- 4. We chain the response of the LLM call to the user
102
- 3. We are using a lot of `async` again!
103
-
104
- Now, we're going to create a helper function for processing uploaded text files.
105
-
106
- First, we'll instantiate a shared `CharacterTextSplitter`.
107
-
108
- ```python
109
- text_splitter = CharacterTextSplitter()
110
- ```
111
-
112
- Now we can define our helper.
113
-
114
- ```python
115
- def process_text_file(file: AskFileResponse):
116
- import tempfile
117
-
118
- with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
119
- temp_file_path = temp_file.name
120
-
121
- with open(temp_file_path, "wb") as f:
122
- f.write(file.content)
123
-
124
- text_loader = TextFileLoader(temp_file_path)
125
- documents = text_loader.load_documents()
126
- texts = text_splitter.split_texts(documents)
127
- return texts
128
- ```
129
-
130
- Simply put, this downloads the file as a temp file, we load it in with `TextFileLoader` and then split it with our `TextSplitter`, and returns that list of strings!
131
-
132
- #### QUESTION #1:
133
-
134
- Why do we want to support streaming? What about streaming is important, or useful?
135
-
136
- ## On Chat Start:
137
-
138
- The next scope is where "the magic happens". On Chat Start is when a user begins a chat session. This will happen whenever a user opens a new chat window, or refreshes an existing chat window.
139
-
140
- You'll see that our code is set-up to immediately show the user a chat box requesting them to upload a file.
141
-
142
- ```python
143
- while files == None:
144
- files = await cl.AskFileMessage(
145
- content="Please upload a Text File file to begin!",
146
- accept=["text/plain"],
147
- max_size_mb=2,
148
- timeout=180,
149
- ).send()
150
- ```
151
-
152
- Once we've obtained the text file - we'll use our processing helper function to process our text!
153
-
154
- After we have processed our text file - we'll need to create a `VectorDatabase` and populate it with our processed chunks and their related embeddings!
155
-
156
- ```python
157
- vector_db = VectorDatabase()
158
- vector_db = await vector_db.abuild_from_list(texts)
159
- ```
160
-
161
- Once we have that piece completed - we can create the chain we'll be using to respond to user queries!
162
-
163
- ```python
164
- retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
165
- vector_db_retriever=vector_db,
166
- llm=chat_openai
167
- )
168
- ```
169
-
170
- Now, we'll save that into our user session!
171
-
172
- > NOTE: Chainlit has some great documentation about [User Session](https://docs.chainlit.io/concepts/user-session).
173
-
174
- ### QUESTION #2:
175
-
176
- Why are we using User Session here? What about Python makes us need to use this? Why not just store everything in a global variable?
177
-
178
- ## On Message
179
-
180
- First, we load our chain from the user session:
181
-
182
- ```python
183
- chain = cl.user_session.get("chain")
184
- ```
185
-
186
- Then, we run the chain on the content of the message - and stream it to the front end - that's it!
187
-
188
- ```python
189
- msg = cl.Message(content="")
190
- result = await chain.arun_pipeline(message.content)
191
-
192
- async for stream_resp in result["response"]:
193
- await msg.stream_token(stream_resp)
194
- ```
195
-
196
- ## 🎉
197
-
198
- With that - you've created a Chainlit application that moves our Pythonic RAG notebook to a Chainlit application!
199
-
200
- ## 🚧 CHALLENGE MODE 🚧
201
-
202
- For an extra challenge - modify the behaviour of your applciation by integrating changes you made to your Pythonic RAG notebook (using new retrieval methods, etc.)
203
-
204
- If you're still looking for a challenge, or didn't make any modifications to your Pythonic RAG notebook:
205
-
206
- 1) Allow users to upload PDFs (this will require you to build a PDF parser as well)
207
- 2) Modify the VectorStore to leverage [Qdrant](https://python-client.qdrant.tech/)
208
-
209
- > NOTE: The motivation for these challenges is simple - the beginning of the course is extremely information dense, and people come from all kinds of different technical backgrounds. In order to ensure that all learners are able to engage with the content confidently and comfortably, we want to focus on the basic units of technical competency required. This leads to a situation where some learners, who came in with more robust technical skills, find the introductory material to be too simple - and these open-ended challenges help us do this!
210
-
211
-
212
-
213
-
214
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/__init__.py DELETED
File without changes
aimakerspace/openai_utils/__init__.py DELETED
File without changes
aimakerspace/openai_utils/chatmodel.py DELETED
@@ -1,45 +0,0 @@
1
- from openai import OpenAI, AsyncOpenAI
2
- from dotenv import load_dotenv
3
- import os
4
-
5
- load_dotenv()
6
-
7
-
8
- class ChatOpenAI:
9
- def __init__(self, model_name: str = "gpt-4o-mini"):
10
- self.model_name = model_name
11
- self.openai_api_key = os.getenv("OPENAI_API_KEY")
12
- if self.openai_api_key is None:
13
- raise ValueError("OPENAI_API_KEY is not set")
14
-
15
- def run(self, messages, text_only: bool = True, **kwargs):
16
- if not isinstance(messages, list):
17
- raise ValueError("messages must be a list")
18
-
19
- client = OpenAI()
20
- response = client.chat.completions.create(
21
- model=self.model_name, messages=messages, **kwargs
22
- )
23
-
24
- if text_only:
25
- return response.choices[0].message.content
26
-
27
- return response
28
-
29
- async def astream(self, messages, **kwargs):
30
- if not isinstance(messages, list):
31
- raise ValueError("messages must be a list")
32
-
33
- client = AsyncOpenAI()
34
-
35
- stream = await client.chat.completions.create(
36
- model=self.model_name,
37
- messages=messages,
38
- stream=True,
39
- **kwargs
40
- )
41
-
42
- async for chunk in stream:
43
- content = chunk.choices[0].delta.content
44
- if content is not None:
45
- yield content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/openai_utils/embedding.py DELETED
@@ -1,59 +0,0 @@
1
- from dotenv import load_dotenv
2
- from openai import AsyncOpenAI, OpenAI
3
- import openai
4
- from typing import List
5
- import os
6
- import asyncio
7
-
8
-
9
- class EmbeddingModel:
10
- def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
11
- load_dotenv()
12
- self.openai_api_key = os.getenv("OPENAI_API_KEY")
13
- self.async_client = AsyncOpenAI()
14
- self.client = OpenAI()
15
-
16
- if self.openai_api_key is None:
17
- raise ValueError(
18
- "OPENAI_API_KEY environment variable is not set. Please set it to your OpenAI API key."
19
- )
20
- openai.api_key = self.openai_api_key
21
- self.embeddings_model_name = embeddings_model_name
22
-
23
- async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
24
- embedding_response = await self.async_client.embeddings.create(
25
- input=list_of_text, model=self.embeddings_model_name
26
- )
27
-
28
- return [embeddings.embedding for embeddings in embedding_response.data]
29
-
30
- async def async_get_embedding(self, text: str) -> List[float]:
31
- embedding = await self.async_client.embeddings.create(
32
- input=text, model=self.embeddings_model_name
33
- )
34
-
35
- return embedding.data[0].embedding
36
-
37
- def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
38
- embedding_response = self.client.embeddings.create(
39
- input=list_of_text, model=self.embeddings_model_name
40
- )
41
-
42
- return [embeddings.embedding for embeddings in embedding_response.data]
43
-
44
- def get_embedding(self, text: str) -> List[float]:
45
- embedding = self.client.embeddings.create(
46
- input=text, model=self.embeddings_model_name
47
- )
48
-
49
- return embedding.data[0].embedding
50
-
51
-
52
- if __name__ == "__main__":
53
- embedding_model = EmbeddingModel()
54
- print(asyncio.run(embedding_model.async_get_embedding("Hello, world!")))
55
- print(
56
- asyncio.run(
57
- embedding_model.async_get_embeddings(["Hello, world!", "Goodbye, world!"])
58
- )
59
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/openai_utils/prompts.py DELETED
@@ -1,78 +0,0 @@
1
- import re
2
-
3
-
4
- class BasePrompt:
5
- def __init__(self, prompt):
6
- """
7
- Initializes the BasePrompt object with a prompt template.
8
-
9
- :param prompt: A string that can contain placeholders within curly braces
10
- """
11
- self.prompt = prompt
12
- self._pattern = re.compile(r"\{([^}]+)\}")
13
-
14
- def format_prompt(self, **kwargs):
15
- """
16
- Formats the prompt string using the keyword arguments provided.
17
-
18
- :param kwargs: The values to substitute into the prompt string
19
- :return: The formatted prompt string
20
- """
21
- matches = self._pattern.findall(self.prompt)
22
- return self.prompt.format(**{match: kwargs.get(match, "") for match in matches})
23
-
24
- def get_input_variables(self):
25
- """
26
- Gets the list of input variable names from the prompt string.
27
-
28
- :return: List of input variable names
29
- """
30
- return self._pattern.findall(self.prompt)
31
-
32
-
33
- class RolePrompt(BasePrompt):
34
- def __init__(self, prompt, role: str):
35
- """
36
- Initializes the RolePrompt object with a prompt template and a role.
37
-
38
- :param prompt: A string that can contain placeholders within curly braces
39
- :param role: The role for the message ('system', 'user', or 'assistant')
40
- """
41
- super().__init__(prompt)
42
- self.role = role
43
-
44
- def create_message(self, format=True, **kwargs):
45
- """
46
- Creates a message dictionary with a role and a formatted message.
47
-
48
- :param kwargs: The values to substitute into the prompt string
49
- :return: Dictionary containing the role and the formatted message
50
- """
51
- if format:
52
- return {"role": self.role, "content": self.format_prompt(**kwargs)}
53
-
54
- return {"role": self.role, "content": self.prompt}
55
-
56
-
57
- class SystemRolePrompt(RolePrompt):
58
- def __init__(self, prompt: str):
59
- super().__init__(prompt, "system")
60
-
61
-
62
- class UserRolePrompt(RolePrompt):
63
- def __init__(self, prompt: str):
64
- super().__init__(prompt, "user")
65
-
66
-
67
- class AssistantRolePrompt(RolePrompt):
68
- def __init__(self, prompt: str):
69
- super().__init__(prompt, "assistant")
70
-
71
-
72
- if __name__ == "__main__":
73
- prompt = BasePrompt("Hello {name}, you are {age} years old")
74
- print(prompt.format_prompt(name="John", age=30))
75
-
76
- prompt = SystemRolePrompt("Hello {name}, you are {age} years old")
77
- print(prompt.create_message(name="John", age=30))
78
- print(prompt.get_input_variables())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/text_utils.py DELETED
@@ -1,136 +0,0 @@
1
- import os
2
- from typing import List
3
- import PyPDF2
4
-
5
-
6
- class TextFileLoader:
7
- def __init__(self, path: str, encoding: str = "utf-8"):
8
- self.documents = []
9
- self.path = path
10
- self.encoding = encoding
11
-
12
- def load(self):
13
- if os.path.isdir(self.path):
14
- self.load_directory()
15
- elif os.path.isfile(self.path) and self.path.endswith(".txt"):
16
- self.load_file()
17
- else:
18
- raise ValueError(
19
- "Provided path is neither a valid directory nor a .txt file."
20
- )
21
-
22
- def load_file(self):
23
- with open(self.path, "r", encoding=self.encoding) as f:
24
- self.documents.append(f.read())
25
-
26
- def load_directory(self):
27
- for root, _, files in os.walk(self.path):
28
- for file in files:
29
- if file.endswith(".txt"):
30
- with open(
31
- os.path.join(root, file), "r", encoding=self.encoding
32
- ) as f:
33
- self.documents.append(f.read())
34
-
35
- def load_documents(self):
36
- self.load()
37
- return self.documents
38
-
39
-
40
- class CharacterTextSplitter:
41
- def __init__(
42
- self,
43
- chunk_size: int = 1000,
44
- chunk_overlap: int = 200,
45
- ):
46
- assert (
47
- chunk_size > chunk_overlap
48
- ), "Chunk size must be greater than chunk overlap"
49
-
50
- self.chunk_size = chunk_size
51
- self.chunk_overlap = chunk_overlap
52
-
53
- def split(self, text: str) -> List[str]:
54
- chunks = []
55
- for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
56
- chunks.append(text[i : i + self.chunk_size])
57
- return chunks
58
-
59
- def split_texts(self, texts: List[str]) -> List[str]:
60
- chunks = []
61
- for text in texts:
62
- chunks.extend(self.split(text))
63
- return chunks
64
-
65
-
66
- class PDFLoader:
67
- def __init__(self, path: str):
68
- self.documents = []
69
- self.path = path
70
- print(f"PDFLoader initialized with path: {self.path}")
71
-
72
- def load(self):
73
- print(f"Loading PDF from path: {self.path}")
74
- print(f"Path exists: {os.path.exists(self.path)}")
75
- print(f"Is file: {os.path.isfile(self.path)}")
76
- print(f"Is directory: {os.path.isdir(self.path)}")
77
- print(f"File permissions: {oct(os.stat(self.path).st_mode)[-3:]}")
78
-
79
- try:
80
- # Try to open the file first to verify access
81
- with open(self.path, 'rb') as test_file:
82
- pass
83
-
84
- # If we can open it, proceed with loading
85
- self.load_file()
86
-
87
- except IOError as e:
88
- raise ValueError(f"Cannot access file at '{self.path}': {str(e)}")
89
- except Exception as e:
90
- raise ValueError(f"Error processing file at '{self.path}': {str(e)}")
91
-
92
- def load_file(self):
93
- with open(self.path, 'rb') as file:
94
- # Create PDF reader object
95
- pdf_reader = PyPDF2.PdfReader(file)
96
-
97
- # Extract text from each page
98
- text = ""
99
- for page in pdf_reader.pages:
100
- text += page.extract_text() + "\n"
101
-
102
- self.documents.append(text)
103
-
104
- def load_directory(self):
105
- for root, _, files in os.walk(self.path):
106
- for file in files:
107
- if file.lower().endswith('.pdf'):
108
- file_path = os.path.join(root, file)
109
- with open(file_path, 'rb') as f:
110
- pdf_reader = PyPDF2.PdfReader(f)
111
-
112
- # Extract text from each page
113
- text = ""
114
- for page in pdf_reader.pages:
115
- text += page.extract_text() + "\n"
116
-
117
- self.documents.append(text)
118
-
119
- def load_documents(self):
120
- self.load()
121
- return self.documents
122
-
123
-
124
- if __name__ == "__main__":
125
- loader = TextFileLoader("data/KingLear.txt")
126
- loader.load()
127
- splitter = CharacterTextSplitter()
128
- chunks = splitter.split_texts(loader.documents)
129
- print(len(chunks))
130
- print(chunks[0])
131
- print("--------")
132
- print(chunks[1])
133
- print("--------")
134
- print(chunks[-2])
135
- print("--------")
136
- print(chunks[-1])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/vectordatabase.py DELETED
@@ -1,81 +0,0 @@
1
- import numpy as np
2
- from collections import defaultdict
3
- from typing import List, Tuple, Callable
4
- from aimakerspace.openai_utils.embedding import EmbeddingModel
5
- import asyncio
6
-
7
-
8
- def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
9
- """Computes the cosine similarity between two vectors."""
10
- dot_product = np.dot(vector_a, vector_b)
11
- norm_a = np.linalg.norm(vector_a)
12
- norm_b = np.linalg.norm(vector_b)
13
- return dot_product / (norm_a * norm_b)
14
-
15
-
16
- class VectorDatabase:
17
- def __init__(self, embedding_model: EmbeddingModel = None):
18
- self.vectors = defaultdict(np.array)
19
- self.embedding_model = embedding_model or EmbeddingModel()
20
-
21
- def insert(self, key: str, vector: np.array) -> None:
22
- self.vectors[key] = vector
23
-
24
- def search(
25
- self,
26
- query_vector: np.array,
27
- k: int,
28
- distance_measure: Callable = cosine_similarity,
29
- ) -> List[Tuple[str, float]]:
30
- scores = [
31
- (key, distance_measure(query_vector, vector))
32
- for key, vector in self.vectors.items()
33
- ]
34
- return sorted(scores, key=lambda x: x[1], reverse=True)[:k]
35
-
36
- def search_by_text(
37
- self,
38
- query_text: str,
39
- k: int,
40
- distance_measure: Callable = cosine_similarity,
41
- return_as_text: bool = False,
42
- ) -> List[Tuple[str, float]]:
43
- query_vector = self.embedding_model.get_embedding(query_text)
44
- results = self.search(query_vector, k, distance_measure)
45
- return [result[0] for result in results] if return_as_text else results
46
-
47
- def retrieve_from_key(self, key: str) -> np.array:
48
- return self.vectors.get(key, None)
49
-
50
- async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
51
- embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
52
- for text, embedding in zip(list_of_text, embeddings):
53
- self.insert(text, np.array(embedding))
54
- return self
55
-
56
-
57
- if __name__ == "__main__":
58
- list_of_text = [
59
- "I like to eat broccoli and bananas.",
60
- "I ate a banana and spinach smoothie for breakfast.",
61
- "Chinchillas and kittens are cute.",
62
- "My sister adopted a kitten yesterday.",
63
- "Look at this cute hamster munching on a piece of broccoli.",
64
- ]
65
-
66
- vector_db = VectorDatabase()
67
- vector_db = asyncio.run(vector_db.abuild_from_list(list_of_text))
68
- k = 2
69
-
70
- searched_vector = vector_db.search_by_text("I think fruit is awesome!", k=k)
71
- print(f"Closest {k} vector(s):", searched_vector)
72
-
73
- retrieved_vector = vector_db.retrieve_from_key(
74
- "I like to eat broccoli and bananas."
75
- )
76
- print("Retrieved vector:", retrieved_vector)
77
-
78
- relevant_texts = vector_db.search_by_text(
79
- "I think fruit is awesome!", k=k, return_as_text=True
80
- )
81
- print(f"Closest {k} text(s):", relevant_texts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
images/docchain_img.png DELETED
Binary file (100 kB)