Spaces:
Sleeping
Sleeping
thomaspaniagua
commited on
Commit
·
71f183c
0
Parent(s):
QuadAttack release
Browse files- .gitignore +143 -0
- README.md +11 -0
- base_config.yaml +36 -0
- debug_test.py +185 -0
- modelguidedattacks/cls_models/__init__.py +4 -0
- modelguidedattacks/cls_models/accuracy.py +115 -0
- modelguidedattacks/cls_models/registry.py +163 -0
- modelguidedattacks/cls_models/setup.py +0 -0
- modelguidedattacks/data/__init__.py +4 -0
- modelguidedattacks/data/classification_wrapper.py +22 -0
- modelguidedattacks/data/imagenet_metadata.py +1000 -0
- modelguidedattacks/data/registry.py +108 -0
- modelguidedattacks/data/setup.py +170 -0
- modelguidedattacks/guides/instance_guide.py +109 -0
- modelguidedattacks/guides/unguided.py +314 -0
- modelguidedattacks/losses/__init__.py +4 -0
- modelguidedattacks/losses/_qp_solver_patch.py +170 -0
- modelguidedattacks/losses/adversarial_distillation/ad_loss.py +38 -0
- modelguidedattacks/losses/adversarial_distillation/adversarial_distribution.py +72 -0
- modelguidedattacks/losses/adversarial_distillation/glove.py +58 -0
- modelguidedattacks/losses/adversarial_distillation/glove_simi.py +126 -0
- modelguidedattacks/losses/boilerplate.py +59 -0
- modelguidedattacks/losses/cvx_proj.py +108 -0
- modelguidedattacks/losses/cw_extension.py +46 -0
- modelguidedattacks/losses/energy.py +80 -0
- modelguidedattacks/metrics/topk_accuracy.py +15 -0
- modelguidedattacks/models.py +32 -0
- modelguidedattacks/results.py +261 -0
- modelguidedattacks/run.py +140 -0
- modelguidedattacks/trainers.py +83 -0
- modelguidedattacks/utils.py +133 -0
- print_results.py +25 -0
- print_table.py +163 -0
- result_stats.py +90 -0
- setup.py +40 -0
.gitignore
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
|
132 |
+
*.tar.gz
|
133 |
+
cifar-10-batches-py
|
134 |
+
logs/**/**
|
135 |
+
logs_old/**/**
|
136 |
+
config-lock.yaml
|
137 |
+
|
138 |
+
*.png
|
139 |
+
*.p
|
140 |
+
datasets/*
|
141 |
+
data/*
|
142 |
+
*.save
|
143 |
+
*.txt
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Getting Started
|
2 |
+
|
3 |
+
Install the dependencies with `pip`:
|
4 |
+
pip install -r requirements.txt
|
5 |
+
|
6 |
+
python setup.py develop
|
7 |
+
|
8 |
+
Adjust configuration in base_config.yaml
|
9 |
+
|
10 |
+
Run current configuration by
|
11 |
+
python modelguidedattacks/run.py base_config.yaml
|
base_config.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 10
|
2 |
+
nproc_per_node: 1
|
3 |
+
k: 5
|
4 |
+
data_path: ./
|
5 |
+
train_batch_size: 64
|
6 |
+
eval_batch_size: 64
|
7 |
+
num_workers: 4
|
8 |
+
max_epochs: 1000
|
9 |
+
train_epoch_length: null
|
10 |
+
eval_epoch_length: null
|
11 |
+
lr: 0.001
|
12 |
+
unguided_lr: 0.0022
|
13 |
+
use_amp: false
|
14 |
+
debug: false
|
15 |
+
model: resnet50
|
16 |
+
dataset: imagenet
|
17 |
+
output_dir: ./logs
|
18 |
+
log_every_iters: 1
|
19 |
+
unguided_iterations: 30
|
20 |
+
overfit: false
|
21 |
+
guide_model: "unguided"
|
22 |
+
loss: "cvxproj"
|
23 |
+
out_dir: ""
|
24 |
+
attack_sampling: "random"
|
25 |
+
|
26 |
+
cvx_proj_margin: 0.2
|
27 |
+
topk_loss_coef_upper: 20
|
28 |
+
opt_warmup_its: 5
|
29 |
+
binary_search_steps: 1
|
30 |
+
|
31 |
+
dump_plots: false
|
32 |
+
plot_idx: find # or specific batch idx
|
33 |
+
plot_out: "myplots/mymethod"
|
34 |
+
|
35 |
+
# List of models used to find correct subset
|
36 |
+
compare_models: ["resnet50", "deit_small", "vit_base", "densenet121"]
|
debug_test.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cvxpy as cp
|
2 |
+
from cvxpylayers.torch import CvxpyLayer
|
3 |
+
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import torch
|
6 |
+
from modelguidedattacks import cls_models
|
7 |
+
import time
|
8 |
+
|
9 |
+
torch.manual_seed(0)
|
10 |
+
device = "cuda"
|
11 |
+
# model = cls_models.get_model("imagenet", "resnet18", device)
|
12 |
+
|
13 |
+
rand_feats = torch.randn(1, 512, device=device)
|
14 |
+
attack_targets = [4, 7, 5, 9, 2]
|
15 |
+
|
16 |
+
# # pred_logits = model.head(rand_feats)
|
17 |
+
|
18 |
+
# # head_W, head_bias = model.head_matrices()
|
19 |
+
|
20 |
+
(head_W, head_bias, pred_logits) = torch.load("debugsaveimagenet.save")
|
21 |
+
|
22 |
+
rand_feats, rand_logits, attack_targets = torch.load("attack_case.p", map_location=device)
|
23 |
+
reconstructed_logits = rand_feats@head_W.T + head_bias
|
24 |
+
|
25 |
+
num_feats = head_W.shape[1]
|
26 |
+
num_classes = head_W.shape[0]
|
27 |
+
x = cp.Variable(num_feats)
|
28 |
+
|
29 |
+
anchor_feats = cp.Parameter(x.shape)
|
30 |
+
A = cp.Parameter(head_W.shape)
|
31 |
+
b = cp.Parameter(head_bias.shape)
|
32 |
+
|
33 |
+
logits = A@x + b
|
34 |
+
|
35 |
+
MARGIN = 0.1
|
36 |
+
|
37 |
+
# constraints = []
|
38 |
+
# for i in range(len(attack_targets) - 1):
|
39 |
+
# constraints.append( logits[attack_targets[i]] - logits[attack_targets[i+1]] >= MARGIN)
|
40 |
+
|
41 |
+
# for i in range(num_classes):
|
42 |
+
# if i in attack_targets:
|
43 |
+
# continue
|
44 |
+
|
45 |
+
# constraints.append(logits[attack_targets[-1]] - logits[i] >= MARGIN )
|
46 |
+
|
47 |
+
# objective = cp.Minimize(0.5 * cp.pnorm(x - anchor_feats, p=2))
|
48 |
+
# problem = cp.Problem(objective, constraints)
|
49 |
+
|
50 |
+
# anchor_feats.value = rand_feats[0].cpu().numpy()
|
51 |
+
# A.value = head_W.detach().cpu().numpy()
|
52 |
+
# b.value = head_bias.detach().cpu().numpy()
|
53 |
+
|
54 |
+
# start_time = time.time()
|
55 |
+
# problem.solve()
|
56 |
+
# print ("Non vectorized sol", time.time() - start_time)
|
57 |
+
|
58 |
+
# logits_sol_torch = torch.from_numpy(logits.value)
|
59 |
+
# logits_check = logits_sol_torch.argsort(descending=True)
|
60 |
+
|
61 |
+
# feats_sol = torch.from_numpy(x.value[:, None]).float().to(rand_feats)
|
62 |
+
# sol_feat_norm = (feats_sol[:, 0].cpu() - rand_feats[0].cpu()).norm(dim=-1)
|
63 |
+
# sol_logits = head_W@feats_sol + head_bias[:, None]
|
64 |
+
# sol_sort = sol_logits.argsort(dim=0, descending=True)
|
65 |
+
|
66 |
+
|
67 |
+
# Constraint matrix
|
68 |
+
num_constraints = num_classes - 1
|
69 |
+
D = torch.zeros((num_classes), num_constraints)
|
70 |
+
|
71 |
+
non_attack_targets = list(set(range(num_classes)) - set(attack_targets))
|
72 |
+
|
73 |
+
for constraint_cursor in range(num_constraints):
|
74 |
+
if constraint_cursor < len(attack_targets) - 1:
|
75 |
+
D[attack_targets[constraint_cursor], constraint_cursor] = 1
|
76 |
+
D[attack_targets[constraint_cursor + 1], constraint_cursor] = -1
|
77 |
+
else:
|
78 |
+
non_attack_i = constraint_cursor - len(attack_targets) + 1
|
79 |
+
D[attack_targets[-1], constraint_cursor] = 1
|
80 |
+
D[non_attack_targets[non_attack_i], constraint_cursor] = -1
|
81 |
+
|
82 |
+
D = D.T
|
83 |
+
# vectorized_differences = D @ logits
|
84 |
+
# vectorized_constraint = vectorized_differences >= torch.full(vectorized_differences.shape, fill_value=MARGIN).numpy()
|
85 |
+
|
86 |
+
# Q = 2*torch.eye(x.shape[0]).numpy()
|
87 |
+
# P = -2*anchor_feats
|
88 |
+
|
89 |
+
# G = D@A
|
90 |
+
# H = MARGIN - D @ b
|
91 |
+
|
92 |
+
# G = -G
|
93 |
+
# H = -H
|
94 |
+
|
95 |
+
# vectorized_constraint = G@x <= H
|
96 |
+
|
97 |
+
# objective = cp.Minimize((1/2)*cp.quad_form(x, Q) + P.T@x)
|
98 |
+
# problem = cp.Problem(objective, [vectorized_constraint])
|
99 |
+
|
100 |
+
# anchor_feats.value = rand_feats[0].cpu().numpy()
|
101 |
+
# A.value = head_W.detach().cpu().numpy()
|
102 |
+
# b.value = head_bias.detach().cpu().numpy()
|
103 |
+
|
104 |
+
# start_time = time.time()
|
105 |
+
# problem.solve()
|
106 |
+
# print ("vectorized sol", time.time() - start_time)
|
107 |
+
|
108 |
+
# logits_sol_torch = torch.from_numpy(logits.value)
|
109 |
+
# logits_check = logits_sol_torch.argsort(descending=True)
|
110 |
+
# feats_sol = torch.from_numpy(x.value[:, None]).float().to(rand_feats)
|
111 |
+
# sol_feat_norm = (feats_sol[:, 0].cpu() - rand_feats[0].cpu()).norm(dim=-1)
|
112 |
+
# sol_logits = head_W@feats_sol + head_bias[:, None]
|
113 |
+
# sol_sort = sol_logits.argsort(dim=0, descending=True)
|
114 |
+
|
115 |
+
import qpth
|
116 |
+
|
117 |
+
|
118 |
+
B = 2
|
119 |
+
nz = num_feats
|
120 |
+
nineq = num_constraints
|
121 |
+
device = "cuda"
|
122 |
+
|
123 |
+
attack_targets = attack_targets.expand(B, -1)
|
124 |
+
K = attack_targets.shape[-1]
|
125 |
+
|
126 |
+
# Start with all classes should be less than smallest attack target
|
127 |
+
D = -torch.eye(num_classes, device=device)[None].repeat(B, 1, 1)
|
128 |
+
attack_targets_write = attack_targets[:, -1][:, None, None].expand(-1, D.shape[1], -1)
|
129 |
+
D.scatter_(dim=2, index=attack_targets_write, src=torch.ones(attack_targets_write.shape, device=device))
|
130 |
+
|
131 |
+
# Clear out the constraint row for each item in the attack targets
|
132 |
+
attack_targets_clear = attack_targets[:, :, None].expand(-1, -1, D.shape[-1])
|
133 |
+
D.scatter_(dim=1, index=attack_targets_clear, src=torch.zeros(attack_targets_clear.shape, device=device))
|
134 |
+
|
135 |
+
batch_inds = torch.arange(B, device=device)[:, None].expand(-1, K - 1)
|
136 |
+
attack_targets_pos = attack_targets[:, :-1] # [B, K-1]
|
137 |
+
attack_targets_neg = attack_targets[:, 1:] # [B, K-1]
|
138 |
+
|
139 |
+
attack_targets_neg_inds = torch.stack((
|
140 |
+
batch_inds,
|
141 |
+
attack_targets_neg,
|
142 |
+
attack_targets_neg
|
143 |
+
), dim=0) # [3, B, K - 1]
|
144 |
+
attack_targets_neg_inds = attack_targets_neg_inds.view(3, -1)
|
145 |
+
|
146 |
+
D[attack_targets_neg_inds[0], attack_targets_neg_inds[1], attack_targets_neg_inds[2]] = -1
|
147 |
+
|
148 |
+
attack_targets_pos_inds = torch.stack((
|
149 |
+
batch_inds,
|
150 |
+
attack_targets_neg,
|
151 |
+
attack_targets_pos
|
152 |
+
), dim=0) # [3, B, K - 1]
|
153 |
+
|
154 |
+
D[attack_targets_pos_inds[0], attack_targets_pos_inds[1], attack_targets_pos_inds[2]] = 1
|
155 |
+
|
156 |
+
A = head_W.detach().to(device)
|
157 |
+
b = head_bias.detach().to(device)
|
158 |
+
D = D.to(device)
|
159 |
+
|
160 |
+
#rand_feats: [B, num_features]
|
161 |
+
Q = 2*torch.eye(nz, device=device)[None].expand(B, -1, -1)
|
162 |
+
P = -2*rand_feats.to(device).expand(B, -1)
|
163 |
+
|
164 |
+
# G = torch.randn(B, nineq, nz, device=device)
|
165 |
+
G = -D@A
|
166 |
+
|
167 |
+
# h = torch.randn(B, nineq)
|
168 |
+
H = -(MARGIN - D @ b)
|
169 |
+
|
170 |
+
# Constraints are indexed by smaller logit
|
171 |
+
# First attack target isn't smaller than any logit, so its
|
172 |
+
# constraint index is redundant, but we keep it for easier parallelization
|
173 |
+
# Make this constraint all 0s
|
174 |
+
zero_inds = attack_targets[:, 0:1] # [B, 1]
|
175 |
+
H.scatter_(dim=1, index=zero_inds, src=torch.zeros(zero_inds.shape, device=device))
|
176 |
+
|
177 |
+
e = torch.empty(0, device=device)
|
178 |
+
|
179 |
+
Q_t, P_t, G_t, H_t = torch.load("qpinputs.p", map_location=device)
|
180 |
+
|
181 |
+
z_sol = qpth.qp.QPFunction(verbose=True, check_Q_spd=False)(Q, P, G, H, e, e).T
|
182 |
+
|
183 |
+
logits = A@z_sol + b[:, None]
|
184 |
+
|
185 |
+
x = 5
|
modelguidedattacks/cls_models/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .registry import register_default_models, get_model
|
2 |
+
from .accuracy import get_correct_subset, get_correct_subset_for_models
|
3 |
+
|
4 |
+
register_default_models()
|
modelguidedattacks/cls_models/accuracy.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import DataLoader
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from modelguidedattacks.data import get_dataset
|
9 |
+
from . import get_model
|
10 |
+
|
11 |
+
from .registry import ClsModel
|
12 |
+
from typing import Optional, List
|
13 |
+
|
14 |
+
DATASET_METADATA_DIR = "./dataset_metadata"
|
15 |
+
|
16 |
+
def correct_subset_cache_path(dataset_name: str, model_name: str, train: bool):
|
17 |
+
filename_train_val = "train" if train else "val"
|
18 |
+
subset_cache_filename = f"{dataset_name}_{model_name}_{filename_train_val}.p"
|
19 |
+
subset_cache_path = os.path.join(DATASET_METADATA_DIR, subset_cache_filename)
|
20 |
+
|
21 |
+
return subset_cache_path
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def get_correct_subset(model: Optional[ClsModel]=None, dataset_name: Optional[str]=None,
|
25 |
+
model_name: Optional[str]=None, train=True, batch_size=256,
|
26 |
+
force_cache=False, device="cuda"):
|
27 |
+
"""
|
28 |
+
model: Model to evaluate
|
29 |
+
dataset_name: Name of dataset (not needed if model is provided)
|
30 |
+
model_name: Name of model (not needed if model is provided)
|
31 |
+
train: Use training dataset
|
32 |
+
batch_size: Batch size to use while evaluating
|
33 |
+
force_cache: Only read from cache and fail if not available
|
34 |
+
|
35 |
+
Returns indices in dataset of correctly classified items
|
36 |
+
"""
|
37 |
+
|
38 |
+
if model is not None:
|
39 |
+
assert dataset_name is None
|
40 |
+
assert model_name is None
|
41 |
+
|
42 |
+
if dataset_name is not None or model_name is not None:
|
43 |
+
assert dataset_name is not None
|
44 |
+
assert model_name is not None
|
45 |
+
assert model is None
|
46 |
+
|
47 |
+
if dataset_name is None:
|
48 |
+
dataset_name = model.dataset_name
|
49 |
+
|
50 |
+
if model_name is None:
|
51 |
+
model_name = model.model_name
|
52 |
+
|
53 |
+
filename_train_val = "train" if train else "val"
|
54 |
+
subset_cache_filename = f"{dataset_name}_{model_name}_{filename_train_val}.p"
|
55 |
+
subset_cache_path = os.path.join(DATASET_METADATA_DIR, subset_cache_filename)
|
56 |
+
|
57 |
+
os.makedirs(DATASET_METADATA_DIR, exist_ok=True)
|
58 |
+
|
59 |
+
if os.path.exists(subset_cache_path):
|
60 |
+
correct_subset = torch.load(subset_cache_path)
|
61 |
+
return correct_subset
|
62 |
+
|
63 |
+
if force_cache:
|
64 |
+
raise Exception("Cache not found and requested for cached correct subset.")
|
65 |
+
|
66 |
+
logging.info(f"No cache found. Computing correct subset for {dataset_name}-{model_name} Train: {train}")
|
67 |
+
|
68 |
+
device = device if model is None else model.device
|
69 |
+
|
70 |
+
if model is None:
|
71 |
+
model = get_model(dataset_name, model_name, device)
|
72 |
+
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
train_dataset, val_dataset = get_dataset(dataset_name)
|
76 |
+
|
77 |
+
dataset = train_dataset
|
78 |
+
|
79 |
+
if not train:
|
80 |
+
dataset = val_dataset
|
81 |
+
|
82 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
|
83 |
+
|
84 |
+
correct_indices = []
|
85 |
+
|
86 |
+
for batch_i, (batch_imgs, batch_gt_class) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
87 |
+
if torch.device(model.device).type.startswith("cuda"):
|
88 |
+
torch.cuda.synchronize(model.device)
|
89 |
+
|
90 |
+
data_start_index = batch_i * batch_size
|
91 |
+
predictions = model(batch_imgs.to(model.device)) # [B, C]
|
92 |
+
prediction_class_idx = predictions.argmax(dim=-1) # [B] (long)
|
93 |
+
prediction_correct = prediction_class_idx == batch_gt_class.to(model.device)
|
94 |
+
batch_correct_idxs = data_start_index + prediction_correct.nonzero()[:, 0]
|
95 |
+
batch_correct_idxs = batch_correct_idxs.tolist()
|
96 |
+
|
97 |
+
correct_indices.extend(batch_correct_idxs)
|
98 |
+
|
99 |
+
correct_subset = set(correct_indices)
|
100 |
+
torch.save(correct_subset, subset_cache_path)
|
101 |
+
|
102 |
+
return set(correct_indices)
|
103 |
+
|
104 |
+
def get_correct_subset_for_models(model_names: List[str], dataset_name, device, train):
|
105 |
+
correct_intersection = None
|
106 |
+
for model_name in model_names:
|
107 |
+
model_correct_subset = get_correct_subset(model_name=model_name, dataset_name=dataset_name,
|
108 |
+
device=device, train=train)
|
109 |
+
|
110 |
+
if correct_intersection is None:
|
111 |
+
correct_intersection = model_correct_subset
|
112 |
+
else:
|
113 |
+
correct_intersection = model_correct_subset.intersection(correct_intersection)
|
114 |
+
|
115 |
+
return list(correct_intersection)
|
modelguidedattacks/cls_models/registry.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mmpretrain
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from collections.abc import Iterable
|
5 |
+
from mmpretrain.models.utils.attention import MultiheadAttention
|
6 |
+
# This holds model instantiation functions by (dataset_name, model_name) tuple keys
|
7 |
+
MODEL_REGISTRY = {}
|
8 |
+
|
9 |
+
class ClsModel(nn.Module):
|
10 |
+
dataset_name: str
|
11 |
+
model_name: str
|
12 |
+
|
13 |
+
def __init__(self, dataset_name: str, model_name: str, device: str) -> None:
|
14 |
+
super().__init__()
|
15 |
+
self.dataset_name = dataset_name
|
16 |
+
self.model_name = model_name
|
17 |
+
self.device = device
|
18 |
+
|
19 |
+
def head_features(self):
|
20 |
+
pass
|
21 |
+
|
22 |
+
def num_classes(self):
|
23 |
+
pass
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
"""
|
27 |
+
x: [B, 3 (RGB), H, W] image (float) [0,1]
|
28 |
+
|
29 |
+
returns: [B, C] class logits
|
30 |
+
"""
|
31 |
+
|
32 |
+
raise NotImplementedError("Forward not implemented for base class")
|
33 |
+
|
34 |
+
class MMPretrainModelWrapper(ClsModel):
|
35 |
+
"""
|
36 |
+
Calls data preprocessing for model before entering forward
|
37 |
+
"""
|
38 |
+
def __init__(self, model: nn.Module, dataset_name: str, model_name: str, device: str) -> None:
|
39 |
+
super().__init__(dataset_name, model_name, device)
|
40 |
+
self.model = model
|
41 |
+
|
42 |
+
@property
|
43 |
+
def final_linear_layer(self):
|
44 |
+
return self.model.head.fc
|
45 |
+
|
46 |
+
def head_features(self):
|
47 |
+
return self.final_linear_layer.in_features
|
48 |
+
|
49 |
+
def num_classes(self):
|
50 |
+
return self.final_linear_layer.out_features
|
51 |
+
|
52 |
+
def head(self, feats):
|
53 |
+
return self.model.head((feats,))
|
54 |
+
|
55 |
+
def head_matrices(self):
|
56 |
+
return self.final_linear_layer.weight, self.final_linear_layer.bias
|
57 |
+
|
58 |
+
def forward(self, x, return_features=False):
|
59 |
+
# Data preprocessor expects 0-255 range, but we don't want to cast to proper
|
60 |
+
# uint8 because we want to maintain differentiability
|
61 |
+
x = x * 255.
|
62 |
+
x = self.model.data_preprocessor({"inputs": x})["inputs"]
|
63 |
+
|
64 |
+
if return_features:
|
65 |
+
feats = self.model.extract_feat(x)
|
66 |
+
|
67 |
+
preds = self.model.head(feats)
|
68 |
+
if isinstance(feats, Iterable):
|
69 |
+
feats = feats[-1]
|
70 |
+
|
71 |
+
return preds, feats
|
72 |
+
else:
|
73 |
+
return self.model(x)
|
74 |
+
|
75 |
+
class MMPretrainVisualTransformerWrapper(MMPretrainModelWrapper):
|
76 |
+
def __init__(self, model, dataset_name: str, model_name: str, device: str) -> None:
|
77 |
+
super().__init__(model, dataset_name, model_name, device)
|
78 |
+
|
79 |
+
attn_layers = []
|
80 |
+
|
81 |
+
def find_mha(m: nn.Module):
|
82 |
+
if isinstance(m, MultiheadAttention):
|
83 |
+
attn_layers.append(m)
|
84 |
+
|
85 |
+
model.apply(find_mha)
|
86 |
+
|
87 |
+
self.attn_layers = attn_layers
|
88 |
+
|
89 |
+
@property
|
90 |
+
def final_linear_layer(self):
|
91 |
+
return self.model.head.layers.head
|
92 |
+
|
93 |
+
def get_attention_maps(self, x):
|
94 |
+
clean_forwards = []
|
95 |
+
|
96 |
+
attention_maps = []
|
97 |
+
|
98 |
+
for attn_layer in self.attn_layers:
|
99 |
+
clean_forward = attn_layer.forward
|
100 |
+
clean_forwards.append(clean_forward)
|
101 |
+
|
102 |
+
def scaled_dot_prod_attn(query,
|
103 |
+
key,
|
104 |
+
value,
|
105 |
+
attn_mask=None,
|
106 |
+
dropout_p=0.,
|
107 |
+
scale=None,
|
108 |
+
is_causal=False):
|
109 |
+
scale = scale or query.size(-1)**0.5
|
110 |
+
if is_causal and attn_mask is not None:
|
111 |
+
attn_mask = torch.ones(
|
112 |
+
query.size(-2), key.size(-2), dtype=torch.bool).tril(diagonal=0)
|
113 |
+
if attn_mask is not None and attn_mask.dtype == torch.bool:
|
114 |
+
attn_mask = attn_mask.masked_fill(not attn_mask, -float('inf'))
|
115 |
+
|
116 |
+
attn_weight = query @ key.transpose(-2, -1) / scale
|
117 |
+
if attn_mask is not None:
|
118 |
+
attn_weight += attn_mask
|
119 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
120 |
+
|
121 |
+
attention_maps.append(attn_weight)
|
122 |
+
|
123 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, True)
|
124 |
+
return attn_weight @ value
|
125 |
+
|
126 |
+
attn_layer.scaled_dot_product_attention = scaled_dot_prod_attn
|
127 |
+
|
128 |
+
ret_val = super().forward(x, False)
|
129 |
+
|
130 |
+
for attn_layer, clean_forward in zip(self.attn_layers, clean_forwards):
|
131 |
+
attn_layer.forward = clean_forward
|
132 |
+
|
133 |
+
return attention_maps
|
134 |
+
|
135 |
+
def register_mmcls_model(config_name, dataset_name, model_name,
|
136 |
+
wrapper_class=MMPretrainModelWrapper):
|
137 |
+
def instantiate_model(device):
|
138 |
+
model = mmpretrain.get_model(config_name, pretrained=True, device=device)
|
139 |
+
wrapper = wrapper_class(model, dataset_name, model_name, device)
|
140 |
+
return wrapper
|
141 |
+
|
142 |
+
MODEL_REGISTRY[(dataset_name, model_name)] = instantiate_model
|
143 |
+
|
144 |
+
def register_default_models():
|
145 |
+
register_mmcls_model("resnet18_8xb16_cifar10", "cifar10", "resnet18")
|
146 |
+
register_mmcls_model("resnet34_8xb16_cifar10", "cifar10", "resnet34")
|
147 |
+
register_mmcls_model("resnet18_8xb32_in1k", "imagenet", "resnet18")
|
148 |
+
register_mmcls_model("resnet50_8xb16_cifar100", "cifar100", "resnet50")
|
149 |
+
register_mmcls_model("resnet50_8xb32_in1k", "imagenet", "resnet50")
|
150 |
+
register_mmcls_model("densenet121_3rdparty_in1k", "imagenet", "densenet121")
|
151 |
+
|
152 |
+
register_mmcls_model("deit-small_4xb256_in1k", "imagenet", "deit_small",
|
153 |
+
wrapper_class=MMPretrainVisualTransformerWrapper)
|
154 |
+
|
155 |
+
register_mmcls_model("vit-base-p16_32xb128-mae_in1k", "imagenet", "vit_base",
|
156 |
+
wrapper_class=MMPretrainVisualTransformerWrapper)
|
157 |
+
|
158 |
+
def get_model(dataset_name, model_name, device):
|
159 |
+
"""
|
160 |
+
Returns instance of model pretrained with specified dataset
|
161 |
+
"""
|
162 |
+
|
163 |
+
return MODEL_REGISTRY[(dataset_name, model_name)](device).eval()
|
modelguidedattacks/cls_models/setup.py
ADDED
File without changes
|
modelguidedattacks/data/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .registry import register_default_datasets
|
2 |
+
from .registry import get_dataset
|
3 |
+
|
4 |
+
register_default_datasets()
|
modelguidedattacks/data/classification_wrapper.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data as data
|
3 |
+
|
4 |
+
class TopKClassificationWrapper(data.Dataset):
|
5 |
+
def __init__(self, dataset: data.Dataset, attack_labels, seed=0, k=1) -> None:
|
6 |
+
super().__init__()
|
7 |
+
self.generator = torch.Generator("cpu")
|
8 |
+
self.generator.manual_seed(seed)
|
9 |
+
|
10 |
+
# Pregenerate attack labels
|
11 |
+
num_classes = len(dataset.classes)
|
12 |
+
|
13 |
+
self.src_dataset = dataset
|
14 |
+
self.attack_labels = attack_labels
|
15 |
+
|
16 |
+
def __getitem__(self, index):
|
17 |
+
image, label = self.src_dataset[index]
|
18 |
+
|
19 |
+
return image, label, self.attack_labels[index], index
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.src_dataset)
|
modelguidedattacks/data/imagenet_metadata.py
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
imgnet_idx_to_name = {0: 'tench, Tinca tinca',
|
2 |
+
1: 'goldfish, Carassius auratus',
|
3 |
+
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
|
4 |
+
3: 'tiger shark, Galeocerdo cuvieri',
|
5 |
+
4: 'hammerhead, hammerhead shark',
|
6 |
+
5: 'electric ray, crampfish, numbfish, torpedo',
|
7 |
+
6: 'stingray',
|
8 |
+
7: 'cock',
|
9 |
+
8: 'hen',
|
10 |
+
9: 'ostrich, Struthio camelus',
|
11 |
+
10: 'brambling, Fringilla montifringilla',
|
12 |
+
11: 'goldfinch, Carduelis carduelis',
|
13 |
+
12: 'house finch, linnet, Carpodacus mexicanus',
|
14 |
+
13: 'junco, snowbird',
|
15 |
+
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
|
16 |
+
15: 'robin, American robin, Turdus migratorius',
|
17 |
+
16: 'bulbul',
|
18 |
+
17: 'jay',
|
19 |
+
18: 'magpie',
|
20 |
+
19: 'chickadee',
|
21 |
+
20: 'water ouzel, dipper',
|
22 |
+
21: 'kite',
|
23 |
+
22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
|
24 |
+
23: 'vulture',
|
25 |
+
24: 'great grey owl, great gray owl, Strix nebulosa',
|
26 |
+
25: 'European fire salamander, Salamandra salamandra',
|
27 |
+
26: 'common newt, Triturus vulgaris',
|
28 |
+
27: 'eft',
|
29 |
+
28: 'spotted salamander, Ambystoma maculatum',
|
30 |
+
29: 'axolotl, mud puppy, Ambystoma mexicanum',
|
31 |
+
30: 'bullfrog, Rana catesbeiana',
|
32 |
+
31: 'tree frog, tree-frog',
|
33 |
+
32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
|
34 |
+
33: 'loggerhead, loggerhead turtle, Caretta caretta',
|
35 |
+
34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
|
36 |
+
35: 'mud turtle',
|
37 |
+
36: 'terrapin',
|
38 |
+
37: 'box turtle, box tortoise',
|
39 |
+
38: 'banded gecko',
|
40 |
+
39: 'common iguana, iguana, Iguana iguana',
|
41 |
+
40: 'American chameleon, anole, Anolis carolinensis',
|
42 |
+
41: 'whiptail, whiptail lizard',
|
43 |
+
42: 'agama',
|
44 |
+
43: 'frilled lizard, Chlamydosaurus kingi',
|
45 |
+
44: 'alligator lizard',
|
46 |
+
45: 'Gila monster, Heloderma suspectum',
|
47 |
+
46: 'green lizard, Lacerta viridis',
|
48 |
+
47: 'African chameleon, Chamaeleo chamaeleon',
|
49 |
+
48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
|
50 |
+
49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
|
51 |
+
50: 'American alligator, Alligator mississipiensis',
|
52 |
+
51: 'triceratops',
|
53 |
+
52: 'thunder snake, worm snake, Carphophis amoenus',
|
54 |
+
53: 'ringneck snake, ring-necked snake, ring snake',
|
55 |
+
54: 'hognose snake, puff adder, sand viper',
|
56 |
+
55: 'green snake, grass snake',
|
57 |
+
56: 'king snake, kingsnake',
|
58 |
+
57: 'garter snake, grass snake',
|
59 |
+
58: 'water snake',
|
60 |
+
59: 'vine snake',
|
61 |
+
60: 'night snake, Hypsiglena torquata',
|
62 |
+
61: 'boa constrictor, Constrictor constrictor',
|
63 |
+
62: 'rock python, rock snake, Python sebae',
|
64 |
+
63: 'Indian cobra, Naja naja',
|
65 |
+
64: 'green mamba',
|
66 |
+
65: 'sea snake',
|
67 |
+
66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
|
68 |
+
67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
|
69 |
+
68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
|
70 |
+
69: 'trilobite',
|
71 |
+
70: 'harvestman, daddy longlegs, Phalangium opilio',
|
72 |
+
71: 'scorpion',
|
73 |
+
72: 'black and gold garden spider, Argiope aurantia',
|
74 |
+
73: 'barn spider, Araneus cavaticus',
|
75 |
+
74: 'garden spider, Aranea diademata',
|
76 |
+
75: 'black widow, Latrodectus mactans',
|
77 |
+
76: 'tarantula',
|
78 |
+
77: 'wolf spider, hunting spider',
|
79 |
+
78: 'tick',
|
80 |
+
79: 'centipede',
|
81 |
+
80: 'black grouse',
|
82 |
+
81: 'ptarmigan',
|
83 |
+
82: 'ruffed grouse, partridge, Bonasa umbellus',
|
84 |
+
83: 'prairie chicken, prairie grouse, prairie fowl',
|
85 |
+
84: 'peacock',
|
86 |
+
85: 'quail',
|
87 |
+
86: 'partridge',
|
88 |
+
87: 'African grey, African gray, Psittacus erithacus',
|
89 |
+
88: 'macaw',
|
90 |
+
89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
|
91 |
+
90: 'lorikeet',
|
92 |
+
91: 'coucal',
|
93 |
+
92: 'bee eater',
|
94 |
+
93: 'hornbill',
|
95 |
+
94: 'hummingbird',
|
96 |
+
95: 'jacamar',
|
97 |
+
96: 'toucan',
|
98 |
+
97: 'drake',
|
99 |
+
98: 'red-breasted merganser, Mergus serrator',
|
100 |
+
99: 'goose',
|
101 |
+
100: 'black swan, Cygnus atratus',
|
102 |
+
101: 'tusker',
|
103 |
+
102: 'echidna, spiny anteater, anteater',
|
104 |
+
103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
|
105 |
+
104: 'wallaby, brush kangaroo',
|
106 |
+
105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
|
107 |
+
106: 'wombat',
|
108 |
+
107: 'jellyfish',
|
109 |
+
108: 'sea anemone, anemone',
|
110 |
+
109: 'brain coral',
|
111 |
+
110: 'flatworm, platyhelminth',
|
112 |
+
111: 'nematode, nematode worm, roundworm',
|
113 |
+
112: 'conch',
|
114 |
+
113: 'snail',
|
115 |
+
114: 'slug',
|
116 |
+
115: 'sea slug, nudibranch',
|
117 |
+
116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
|
118 |
+
117: 'chambered nautilus, pearly nautilus, nautilus',
|
119 |
+
118: 'Dungeness crab, Cancer magister',
|
120 |
+
119: 'rock crab, Cancer irroratus',
|
121 |
+
120: 'fiddler crab',
|
122 |
+
121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
|
123 |
+
122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
|
124 |
+
123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
|
125 |
+
124: 'crayfish, crawfish, crawdad, crawdaddy',
|
126 |
+
125: 'hermit crab',
|
127 |
+
126: 'isopod',
|
128 |
+
127: 'white stork, Ciconia ciconia',
|
129 |
+
128: 'black stork, Ciconia nigra',
|
130 |
+
129: 'spoonbill',
|
131 |
+
130: 'flamingo',
|
132 |
+
131: 'little blue heron, Egretta caerulea',
|
133 |
+
132: 'American egret, great white heron, Egretta albus',
|
134 |
+
133: 'bittern',
|
135 |
+
134: 'crane',
|
136 |
+
135: 'limpkin, Aramus pictus',
|
137 |
+
136: 'European gallinule, Porphyrio porphyrio',
|
138 |
+
137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
|
139 |
+
138: 'bustard',
|
140 |
+
139: 'ruddy turnstone, Arenaria interpres',
|
141 |
+
140: 'red-backed sandpiper, dunlin, Erolia alpina',
|
142 |
+
141: 'redshank, Tringa totanus',
|
143 |
+
142: 'dowitcher',
|
144 |
+
143: 'oystercatcher, oyster catcher',
|
145 |
+
144: 'pelican',
|
146 |
+
145: 'king penguin, Aptenodytes patagonica',
|
147 |
+
146: 'albatross, mollymawk',
|
148 |
+
147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
|
149 |
+
148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
|
150 |
+
149: 'dugong, Dugong dugon',
|
151 |
+
150: 'sea lion',
|
152 |
+
151: 'Chihuahua',
|
153 |
+
152: 'Japanese spaniel',
|
154 |
+
153: 'Maltese dog, Maltese terrier, Maltese',
|
155 |
+
154: 'Pekinese, Pekingese, Peke',
|
156 |
+
155: 'Shih-Tzu',
|
157 |
+
156: 'Blenheim spaniel',
|
158 |
+
157: 'papillon',
|
159 |
+
158: 'toy terrier',
|
160 |
+
159: 'Rhodesian ridgeback',
|
161 |
+
160: 'Afghan hound, Afghan',
|
162 |
+
161: 'basset, basset hound',
|
163 |
+
162: 'beagle',
|
164 |
+
163: 'bloodhound, sleuthhound',
|
165 |
+
164: 'bluetick',
|
166 |
+
165: 'black-and-tan coonhound',
|
167 |
+
166: 'Walker hound, Walker foxhound',
|
168 |
+
167: 'English foxhound',
|
169 |
+
168: 'redbone',
|
170 |
+
169: 'borzoi, Russian wolfhound',
|
171 |
+
170: 'Irish wolfhound',
|
172 |
+
171: 'Italian greyhound',
|
173 |
+
172: 'whippet',
|
174 |
+
173: 'Ibizan hound, Ibizan Podenco',
|
175 |
+
174: 'Norwegian elkhound, elkhound',
|
176 |
+
175: 'otterhound, otter hound',
|
177 |
+
176: 'Saluki, gazelle hound',
|
178 |
+
177: 'Scottish deerhound, deerhound',
|
179 |
+
178: 'Weimaraner',
|
180 |
+
179: 'Staffordshire bullterrier, Staffordshire bull terrier',
|
181 |
+
180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
|
182 |
+
181: 'Bedlington terrier',
|
183 |
+
182: 'Border terrier',
|
184 |
+
183: 'Kerry blue terrier',
|
185 |
+
184: 'Irish terrier',
|
186 |
+
185: 'Norfolk terrier',
|
187 |
+
186: 'Norwich terrier',
|
188 |
+
187: 'Yorkshire terrier',
|
189 |
+
188: 'wire-haired fox terrier',
|
190 |
+
189: 'Lakeland terrier',
|
191 |
+
190: 'Sealyham terrier, Sealyham',
|
192 |
+
191: 'Airedale, Airedale terrier',
|
193 |
+
192: 'cairn, cairn terrier',
|
194 |
+
193: 'Australian terrier',
|
195 |
+
194: 'Dandie Dinmont, Dandie Dinmont terrier',
|
196 |
+
195: 'Boston bull, Boston terrier',
|
197 |
+
196: 'miniature schnauzer',
|
198 |
+
197: 'giant schnauzer',
|
199 |
+
198: 'standard schnauzer',
|
200 |
+
199: 'Scotch terrier, Scottish terrier, Scottie',
|
201 |
+
200: 'Tibetan terrier, chrysanthemum dog',
|
202 |
+
201: 'silky terrier, Sydney silky',
|
203 |
+
202: 'soft-coated wheaten terrier',
|
204 |
+
203: 'West Highland white terrier',
|
205 |
+
204: 'Lhasa, Lhasa apso',
|
206 |
+
205: 'flat-coated retriever',
|
207 |
+
206: 'curly-coated retriever',
|
208 |
+
207: 'golden retriever',
|
209 |
+
208: 'Labrador retriever',
|
210 |
+
209: 'Chesapeake Bay retriever',
|
211 |
+
210: 'German short-haired pointer',
|
212 |
+
211: 'vizsla, Hungarian pointer',
|
213 |
+
212: 'English setter',
|
214 |
+
213: 'Irish setter, red setter',
|
215 |
+
214: 'Gordon setter',
|
216 |
+
215: 'Brittany spaniel',
|
217 |
+
216: 'clumber, clumber spaniel',
|
218 |
+
217: 'English springer, English springer spaniel',
|
219 |
+
218: 'Welsh springer spaniel',
|
220 |
+
219: 'cocker spaniel, English cocker spaniel, cocker',
|
221 |
+
220: 'Sussex spaniel',
|
222 |
+
221: 'Irish water spaniel',
|
223 |
+
222: 'kuvasz',
|
224 |
+
223: 'schipperke',
|
225 |
+
224: 'groenendael',
|
226 |
+
225: 'malinois',
|
227 |
+
226: 'briard',
|
228 |
+
227: 'kelpie',
|
229 |
+
228: 'komondor',
|
230 |
+
229: 'Old English sheepdog, bobtail',
|
231 |
+
230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
|
232 |
+
231: 'collie',
|
233 |
+
232: 'Border collie',
|
234 |
+
233: 'Bouvier des Flandres, Bouviers des Flandres',
|
235 |
+
234: 'Rottweiler',
|
236 |
+
235: 'German shepherd, German shepherd dog, German police dog, alsatian',
|
237 |
+
236: 'Doberman, Doberman pinscher',
|
238 |
+
237: 'miniature pinscher',
|
239 |
+
238: 'Greater Swiss Mountain dog',
|
240 |
+
239: 'Bernese mountain dog',
|
241 |
+
240: 'Appenzeller',
|
242 |
+
241: 'EntleBucher',
|
243 |
+
242: 'boxer',
|
244 |
+
243: 'bull mastiff',
|
245 |
+
244: 'Tibetan mastiff',
|
246 |
+
245: 'French bulldog',
|
247 |
+
246: 'Great Dane',
|
248 |
+
247: 'Saint Bernard, St Bernard',
|
249 |
+
248: 'Eskimo dog, husky',
|
250 |
+
249: 'malamute, malemute, Alaskan malamute',
|
251 |
+
250: 'Siberian husky',
|
252 |
+
251: 'dalmatian, coach dog, carriage dog',
|
253 |
+
252: 'affenpinscher, monkey pinscher, monkey dog',
|
254 |
+
253: 'basenji',
|
255 |
+
254: 'pug, pug-dog',
|
256 |
+
255: 'Leonberg',
|
257 |
+
256: 'Newfoundland, Newfoundland dog',
|
258 |
+
257: 'Great Pyrenees',
|
259 |
+
258: 'Samoyed, Samoyede',
|
260 |
+
259: 'Pomeranian',
|
261 |
+
260: 'chow, chow chow',
|
262 |
+
261: 'keeshond',
|
263 |
+
262: 'Brabancon griffon',
|
264 |
+
263: 'Pembroke, Pembroke Welsh corgi',
|
265 |
+
264: 'Cardigan, Cardigan Welsh corgi',
|
266 |
+
265: 'toy poodle',
|
267 |
+
266: 'miniature poodle',
|
268 |
+
267: 'standard poodle',
|
269 |
+
268: 'Mexican hairless',
|
270 |
+
269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
|
271 |
+
270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
|
272 |
+
271: 'red wolf, maned wolf, Canis rufus, Canis niger',
|
273 |
+
272: 'coyote, prairie wolf, brush wolf, Canis latrans',
|
274 |
+
273: 'dingo, warrigal, warragal, Canis dingo',
|
275 |
+
274: 'dhole, Cuon alpinus',
|
276 |
+
275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
|
277 |
+
276: 'hyena, hyaena',
|
278 |
+
277: 'red fox, Vulpes vulpes',
|
279 |
+
278: 'kit fox, Vulpes macrotis',
|
280 |
+
279: 'Arctic fox, white fox, Alopex lagopus',
|
281 |
+
280: 'grey fox, gray fox, Urocyon cinereoargenteus',
|
282 |
+
281: 'tabby, tabby cat',
|
283 |
+
282: 'tiger cat',
|
284 |
+
283: 'Persian cat',
|
285 |
+
284: 'Siamese cat, Siamese',
|
286 |
+
285: 'Egyptian cat',
|
287 |
+
286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
|
288 |
+
287: 'lynx, catamount',
|
289 |
+
288: 'leopard, Panthera pardus',
|
290 |
+
289: 'snow leopard, ounce, Panthera uncia',
|
291 |
+
290: 'jaguar, panther, Panthera onca, Felis onca',
|
292 |
+
291: 'lion, king of beasts, Panthera leo',
|
293 |
+
292: 'tiger, Panthera tigris',
|
294 |
+
293: 'cheetah, chetah, Acinonyx jubatus',
|
295 |
+
294: 'brown bear, bruin, Ursus arctos',
|
296 |
+
295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
|
297 |
+
296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
|
298 |
+
297: 'sloth bear, Melursus ursinus, Ursus ursinus',
|
299 |
+
298: 'mongoose',
|
300 |
+
299: 'meerkat, mierkat',
|
301 |
+
300: 'tiger beetle',
|
302 |
+
301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
|
303 |
+
302: 'ground beetle, carabid beetle',
|
304 |
+
303: 'long-horned beetle, longicorn, longicorn beetle',
|
305 |
+
304: 'leaf beetle, chrysomelid',
|
306 |
+
305: 'dung beetle',
|
307 |
+
306: 'rhinoceros beetle',
|
308 |
+
307: 'weevil',
|
309 |
+
308: 'fly',
|
310 |
+
309: 'bee',
|
311 |
+
310: 'ant, emmet, pismire',
|
312 |
+
311: 'grasshopper, hopper',
|
313 |
+
312: 'cricket',
|
314 |
+
313: 'walking stick, walkingstick, stick insect',
|
315 |
+
314: 'cockroach, roach',
|
316 |
+
315: 'mantis, mantid',
|
317 |
+
316: 'cicada, cicala',
|
318 |
+
317: 'leafhopper',
|
319 |
+
318: 'lacewing, lacewing fly',
|
320 |
+
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
|
321 |
+
320: 'damselfly',
|
322 |
+
321: 'admiral',
|
323 |
+
322: 'ringlet, ringlet butterfly',
|
324 |
+
323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
|
325 |
+
324: 'cabbage butterfly',
|
326 |
+
325: 'sulphur butterfly, sulfur butterfly',
|
327 |
+
326: 'lycaenid, lycaenid butterfly',
|
328 |
+
327: 'starfish, sea star',
|
329 |
+
328: 'sea urchin',
|
330 |
+
329: 'sea cucumber, holothurian',
|
331 |
+
330: 'wood rabbit, cottontail, cottontail rabbit',
|
332 |
+
331: 'hare',
|
333 |
+
332: 'Angora, Angora rabbit',
|
334 |
+
333: 'hamster',
|
335 |
+
334: 'porcupine, hedgehog',
|
336 |
+
335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
|
337 |
+
336: 'marmot',
|
338 |
+
337: 'beaver',
|
339 |
+
338: 'guinea pig, Cavia cobaya',
|
340 |
+
339: 'sorrel',
|
341 |
+
340: 'zebra',
|
342 |
+
341: 'hog, pig, grunter, squealer, Sus scrofa',
|
343 |
+
342: 'wild boar, boar, Sus scrofa',
|
344 |
+
343: 'warthog',
|
345 |
+
344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
|
346 |
+
345: 'ox',
|
347 |
+
346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
|
348 |
+
347: 'bison',
|
349 |
+
348: 'ram, tup',
|
350 |
+
349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
|
351 |
+
350: 'ibex, Capra ibex',
|
352 |
+
351: 'hartebeest',
|
353 |
+
352: 'impala, Aepyceros melampus',
|
354 |
+
353: 'gazelle',
|
355 |
+
354: 'Arabian camel, dromedary, Camelus dromedarius',
|
356 |
+
355: 'llama',
|
357 |
+
356: 'weasel',
|
358 |
+
357: 'mink',
|
359 |
+
358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
|
360 |
+
359: 'black-footed ferret, ferret, Mustela nigripes',
|
361 |
+
360: 'otter',
|
362 |
+
361: 'skunk, polecat, wood pussy',
|
363 |
+
362: 'badger',
|
364 |
+
363: 'armadillo',
|
365 |
+
364: 'three-toed sloth, ai, Bradypus tridactylus',
|
366 |
+
365: 'orangutan, orang, orangutang, Pongo pygmaeus',
|
367 |
+
366: 'gorilla, Gorilla gorilla',
|
368 |
+
367: 'chimpanzee, chimp, Pan troglodytes',
|
369 |
+
368: 'gibbon, Hylobates lar',
|
370 |
+
369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
|
371 |
+
370: 'guenon, guenon monkey',
|
372 |
+
371: 'patas, hussar monkey, Erythrocebus patas',
|
373 |
+
372: 'baboon',
|
374 |
+
373: 'macaque',
|
375 |
+
374: 'langur',
|
376 |
+
375: 'colobus, colobus monkey',
|
377 |
+
376: 'proboscis monkey, Nasalis larvatus',
|
378 |
+
377: 'marmoset',
|
379 |
+
378: 'capuchin, ringtail, Cebus capucinus',
|
380 |
+
379: 'howler monkey, howler',
|
381 |
+
380: 'titi, titi monkey',
|
382 |
+
381: 'spider monkey, Ateles geoffroyi',
|
383 |
+
382: 'squirrel monkey, Saimiri sciureus',
|
384 |
+
383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
|
385 |
+
384: 'indri, indris, Indri indri, Indri brevicaudatus',
|
386 |
+
385: 'Indian elephant, Elephas maximus',
|
387 |
+
386: 'African elephant, Loxodonta africana',
|
388 |
+
387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
|
389 |
+
388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
|
390 |
+
389: 'barracouta, snoek',
|
391 |
+
390: 'eel',
|
392 |
+
391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
|
393 |
+
392: 'rock beauty, Holocanthus tricolor',
|
394 |
+
393: 'anemone fish',
|
395 |
+
394: 'sturgeon',
|
396 |
+
395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
|
397 |
+
396: 'lionfish',
|
398 |
+
397: 'puffer, pufferfish, blowfish, globefish',
|
399 |
+
398: 'abacus',
|
400 |
+
399: 'abaya',
|
401 |
+
400: "academic gown, academic robe, judge's robe",
|
402 |
+
401: 'accordion, piano accordion, squeeze box',
|
403 |
+
402: 'acoustic guitar',
|
404 |
+
403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
|
405 |
+
404: 'airliner',
|
406 |
+
405: 'airship, dirigible',
|
407 |
+
406: 'altar',
|
408 |
+
407: 'ambulance',
|
409 |
+
408: 'amphibian, amphibious vehicle',
|
410 |
+
409: 'analog clock',
|
411 |
+
410: 'apiary, bee house',
|
412 |
+
411: 'apron',
|
413 |
+
412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
|
414 |
+
413: 'assault rifle, assault gun',
|
415 |
+
414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
|
416 |
+
415: 'bakery, bakeshop, bakehouse',
|
417 |
+
416: 'balance beam, beam',
|
418 |
+
417: 'balloon',
|
419 |
+
418: 'ballpoint, ballpoint pen, ballpen, Biro',
|
420 |
+
419: 'Band Aid',
|
421 |
+
420: 'banjo',
|
422 |
+
421: 'bannister, banister, balustrade, balusters, handrail',
|
423 |
+
422: 'barbell',
|
424 |
+
423: 'barber chair',
|
425 |
+
424: 'barbershop',
|
426 |
+
425: 'barn',
|
427 |
+
426: 'barometer',
|
428 |
+
427: 'barrel, cask',
|
429 |
+
428: 'barrow, garden cart, lawn cart, wheelbarrow',
|
430 |
+
429: 'baseball',
|
431 |
+
430: 'basketball',
|
432 |
+
431: 'bassinet',
|
433 |
+
432: 'bassoon',
|
434 |
+
433: 'bathing cap, swimming cap',
|
435 |
+
434: 'bath towel',
|
436 |
+
435: 'bathtub, bathing tub, bath, tub',
|
437 |
+
436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
|
438 |
+
437: 'beacon, lighthouse, beacon light, pharos',
|
439 |
+
438: 'beaker',
|
440 |
+
439: 'bearskin, busby, shako',
|
441 |
+
440: 'beer bottle',
|
442 |
+
441: 'beer glass',
|
443 |
+
442: 'bell cote, bell cot',
|
444 |
+
443: 'bib',
|
445 |
+
444: 'bicycle-built-for-two, tandem bicycle, tandem',
|
446 |
+
445: 'bikini, two-piece',
|
447 |
+
446: 'binder, ring-binder',
|
448 |
+
447: 'binoculars, field glasses, opera glasses',
|
449 |
+
448: 'birdhouse',
|
450 |
+
449: 'boathouse',
|
451 |
+
450: 'bobsled, bobsleigh, bob',
|
452 |
+
451: 'bolo tie, bolo, bola tie, bola',
|
453 |
+
452: 'bonnet, poke bonnet',
|
454 |
+
453: 'bookcase',
|
455 |
+
454: 'bookshop, bookstore, bookstall',
|
456 |
+
455: 'bottlecap',
|
457 |
+
456: 'bow',
|
458 |
+
457: 'bow tie, bow-tie, bowtie',
|
459 |
+
458: 'brass, memorial tablet, plaque',
|
460 |
+
459: 'brassiere, bra, bandeau',
|
461 |
+
460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
|
462 |
+
461: 'breastplate, aegis, egis',
|
463 |
+
462: 'broom',
|
464 |
+
463: 'bucket, pail',
|
465 |
+
464: 'buckle',
|
466 |
+
465: 'bulletproof vest',
|
467 |
+
466: 'bullet train, bullet',
|
468 |
+
467: 'butcher shop, meat market',
|
469 |
+
468: 'cab, hack, taxi, taxicab',
|
470 |
+
469: 'caldron, cauldron',
|
471 |
+
470: 'candle, taper, wax light',
|
472 |
+
471: 'cannon',
|
473 |
+
472: 'canoe',
|
474 |
+
473: 'can opener, tin opener',
|
475 |
+
474: 'cardigan',
|
476 |
+
475: 'car mirror',
|
477 |
+
476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
|
478 |
+
477: "carpenter's kit, tool kit",
|
479 |
+
478: 'carton',
|
480 |
+
479: 'car wheel',
|
481 |
+
480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
|
482 |
+
481: 'cassette',
|
483 |
+
482: 'cassette player',
|
484 |
+
483: 'castle',
|
485 |
+
484: 'catamaran',
|
486 |
+
485: 'CD player',
|
487 |
+
486: 'cello, violoncello',
|
488 |
+
487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
|
489 |
+
488: 'chain',
|
490 |
+
489: 'chainlink fence',
|
491 |
+
490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
|
492 |
+
491: 'chain saw, chainsaw',
|
493 |
+
492: 'chest',
|
494 |
+
493: 'chiffonier, commode',
|
495 |
+
494: 'chime, bell, gong',
|
496 |
+
495: 'china cabinet, china closet',
|
497 |
+
496: 'Christmas stocking',
|
498 |
+
497: 'church, church building',
|
499 |
+
498: 'cinema, movie theater, movie theatre, movie house, picture palace',
|
500 |
+
499: 'cleaver, meat cleaver, chopper',
|
501 |
+
500: 'cliff dwelling',
|
502 |
+
501: 'cloak',
|
503 |
+
502: 'clog, geta, patten, sabot',
|
504 |
+
503: 'cocktail shaker',
|
505 |
+
504: 'coffee mug',
|
506 |
+
505: 'coffeepot',
|
507 |
+
506: 'coil, spiral, volute, whorl, helix',
|
508 |
+
507: 'combination lock',
|
509 |
+
508: 'computer keyboard, keypad',
|
510 |
+
509: 'confectionery, confectionary, candy store',
|
511 |
+
510: 'container ship, containership, container vessel',
|
512 |
+
511: 'convertible',
|
513 |
+
512: 'corkscrew, bottle screw',
|
514 |
+
513: 'cornet, horn, trumpet, trump',
|
515 |
+
514: 'cowboy boot',
|
516 |
+
515: 'cowboy hat, ten-gallon hat',
|
517 |
+
516: 'cradle',
|
518 |
+
517: 'crane',
|
519 |
+
518: 'crash helmet',
|
520 |
+
519: 'crate',
|
521 |
+
520: 'crib, cot',
|
522 |
+
521: 'Crock Pot',
|
523 |
+
522: 'croquet ball',
|
524 |
+
523: 'crutch',
|
525 |
+
524: 'cuirass',
|
526 |
+
525: 'dam, dike, dyke',
|
527 |
+
526: 'desk',
|
528 |
+
527: 'desktop computer',
|
529 |
+
528: 'dial telephone, dial phone',
|
530 |
+
529: 'diaper, nappy, napkin',
|
531 |
+
530: 'digital clock',
|
532 |
+
531: 'digital watch',
|
533 |
+
532: 'dining table, board',
|
534 |
+
533: 'dishrag, dishcloth',
|
535 |
+
534: 'dishwasher, dish washer, dishwashing machine',
|
536 |
+
535: 'disk brake, disc brake',
|
537 |
+
536: 'dock, dockage, docking facility',
|
538 |
+
537: 'dogsled, dog sled, dog sleigh',
|
539 |
+
538: 'dome',
|
540 |
+
539: 'doormat, welcome mat',
|
541 |
+
540: 'drilling platform, offshore rig',
|
542 |
+
541: 'drum, membranophone, tympan',
|
543 |
+
542: 'drumstick',
|
544 |
+
543: 'dumbbell',
|
545 |
+
544: 'Dutch oven',
|
546 |
+
545: 'electric fan, blower',
|
547 |
+
546: 'electric guitar',
|
548 |
+
547: 'electric locomotive',
|
549 |
+
548: 'entertainment center',
|
550 |
+
549: 'envelope',
|
551 |
+
550: 'espresso maker',
|
552 |
+
551: 'face powder',
|
553 |
+
552: 'feather boa, boa',
|
554 |
+
553: 'file, file cabinet, filing cabinet',
|
555 |
+
554: 'fireboat',
|
556 |
+
555: 'fire engine, fire truck',
|
557 |
+
556: 'fire screen, fireguard',
|
558 |
+
557: 'flagpole, flagstaff',
|
559 |
+
558: 'flute, transverse flute',
|
560 |
+
559: 'folding chair',
|
561 |
+
560: 'football helmet',
|
562 |
+
561: 'forklift',
|
563 |
+
562: 'fountain',
|
564 |
+
563: 'fountain pen',
|
565 |
+
564: 'four-poster',
|
566 |
+
565: 'freight car',
|
567 |
+
566: 'French horn, horn',
|
568 |
+
567: 'frying pan, frypan, skillet',
|
569 |
+
568: 'fur coat',
|
570 |
+
569: 'garbage truck, dustcart',
|
571 |
+
570: 'gasmask, respirator, gas helmet',
|
572 |
+
571: 'gas pump, gasoline pump, petrol pump, island dispenser',
|
573 |
+
572: 'goblet',
|
574 |
+
573: 'go-kart',
|
575 |
+
574: 'golf ball',
|
576 |
+
575: 'golfcart, golf cart',
|
577 |
+
576: 'gondola',
|
578 |
+
577: 'gong, tam-tam',
|
579 |
+
578: 'gown',
|
580 |
+
579: 'grand piano, grand',
|
581 |
+
580: 'greenhouse, nursery, glasshouse',
|
582 |
+
581: 'grille, radiator grille',
|
583 |
+
582: 'grocery store, grocery, food market, market',
|
584 |
+
583: 'guillotine',
|
585 |
+
584: 'hair slide',
|
586 |
+
585: 'hair spray',
|
587 |
+
586: 'half track',
|
588 |
+
587: 'hammer',
|
589 |
+
588: 'hamper',
|
590 |
+
589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
|
591 |
+
590: 'hand-held computer, hand-held microcomputer',
|
592 |
+
591: 'handkerchief, hankie, hanky, hankey',
|
593 |
+
592: 'hard disc, hard disk, fixed disk',
|
594 |
+
593: 'harmonica, mouth organ, harp, mouth harp',
|
595 |
+
594: 'harp',
|
596 |
+
595: 'harvester, reaper',
|
597 |
+
596: 'hatchet',
|
598 |
+
597: 'holster',
|
599 |
+
598: 'home theater, home theatre',
|
600 |
+
599: 'honeycomb',
|
601 |
+
600: 'hook, claw',
|
602 |
+
601: 'hoopskirt, crinoline',
|
603 |
+
602: 'horizontal bar, high bar',
|
604 |
+
603: 'horse cart, horse-cart',
|
605 |
+
604: 'hourglass',
|
606 |
+
605: 'iPod',
|
607 |
+
606: 'iron, smoothing iron',
|
608 |
+
607: "jack-o'-lantern",
|
609 |
+
608: 'jean, blue jean, denim',
|
610 |
+
609: 'jeep, landrover',
|
611 |
+
610: 'jersey, T-shirt, tee shirt',
|
612 |
+
611: 'jigsaw puzzle',
|
613 |
+
612: 'jinrikisha, ricksha, rickshaw',
|
614 |
+
613: 'joystick',
|
615 |
+
614: 'kimono',
|
616 |
+
615: 'knee pad',
|
617 |
+
616: 'knot',
|
618 |
+
617: 'lab coat, laboratory coat',
|
619 |
+
618: 'ladle',
|
620 |
+
619: 'lampshade, lamp shade',
|
621 |
+
620: 'laptop, laptop computer',
|
622 |
+
621: 'lawn mower, mower',
|
623 |
+
622: 'lens cap, lens cover',
|
624 |
+
623: 'letter opener, paper knife, paperknife',
|
625 |
+
624: 'library',
|
626 |
+
625: 'lifeboat',
|
627 |
+
626: 'lighter, light, igniter, ignitor',
|
628 |
+
627: 'limousine, limo',
|
629 |
+
628: 'liner, ocean liner',
|
630 |
+
629: 'lipstick, lip rouge',
|
631 |
+
630: 'Loafer',
|
632 |
+
631: 'lotion',
|
633 |
+
632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
|
634 |
+
633: "loupe, jeweler's loupe",
|
635 |
+
634: 'lumbermill, sawmill',
|
636 |
+
635: 'magnetic compass',
|
637 |
+
636: 'mailbag, postbag',
|
638 |
+
637: 'mailbox, letter box',
|
639 |
+
638: 'maillot',
|
640 |
+
639: 'maillot, tank suit',
|
641 |
+
640: 'manhole cover',
|
642 |
+
641: 'maraca',
|
643 |
+
642: 'marimba, xylophone',
|
644 |
+
643: 'mask',
|
645 |
+
644: 'matchstick',
|
646 |
+
645: 'maypole',
|
647 |
+
646: 'maze, labyrinth',
|
648 |
+
647: 'measuring cup',
|
649 |
+
648: 'medicine chest, medicine cabinet',
|
650 |
+
649: 'megalith, megalithic structure',
|
651 |
+
650: 'microphone, mike',
|
652 |
+
651: 'microwave, microwave oven',
|
653 |
+
652: 'military uniform',
|
654 |
+
653: 'milk can',
|
655 |
+
654: 'minibus',
|
656 |
+
655: 'miniskirt, mini',
|
657 |
+
656: 'minivan',
|
658 |
+
657: 'missile',
|
659 |
+
658: 'mitten',
|
660 |
+
659: 'mixing bowl',
|
661 |
+
660: 'mobile home, manufactured home',
|
662 |
+
661: 'Model T',
|
663 |
+
662: 'modem',
|
664 |
+
663: 'monastery',
|
665 |
+
664: 'monitor',
|
666 |
+
665: 'moped',
|
667 |
+
666: 'mortar',
|
668 |
+
667: 'mortarboard',
|
669 |
+
668: 'mosque',
|
670 |
+
669: 'mosquito net',
|
671 |
+
670: 'motor scooter, scooter',
|
672 |
+
671: 'mountain bike, all-terrain bike, off-roader',
|
673 |
+
672: 'mountain tent',
|
674 |
+
673: 'mouse, computer mouse',
|
675 |
+
674: 'mousetrap',
|
676 |
+
675: 'moving van',
|
677 |
+
676: 'muzzle',
|
678 |
+
677: 'nail',
|
679 |
+
678: 'neck brace',
|
680 |
+
679: 'necklace',
|
681 |
+
680: 'nipple',
|
682 |
+
681: 'notebook, notebook computer',
|
683 |
+
682: 'obelisk',
|
684 |
+
683: 'oboe, hautboy, hautbois',
|
685 |
+
684: 'ocarina, sweet potato',
|
686 |
+
685: 'odometer, hodometer, mileometer, milometer',
|
687 |
+
686: 'oil filter',
|
688 |
+
687: 'organ, pipe organ',
|
689 |
+
688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
|
690 |
+
689: 'overskirt',
|
691 |
+
690: 'oxcart',
|
692 |
+
691: 'oxygen mask',
|
693 |
+
692: 'packet',
|
694 |
+
693: 'paddle, boat paddle',
|
695 |
+
694: 'paddlewheel, paddle wheel',
|
696 |
+
695: 'padlock',
|
697 |
+
696: 'paintbrush',
|
698 |
+
697: "pajama, pyjama, pj's, jammies",
|
699 |
+
698: 'palace',
|
700 |
+
699: 'panpipe, pandean pipe, syrinx',
|
701 |
+
700: 'paper towel',
|
702 |
+
701: 'parachute, chute',
|
703 |
+
702: 'parallel bars, bars',
|
704 |
+
703: 'park bench',
|
705 |
+
704: 'parking meter',
|
706 |
+
705: 'passenger car, coach, carriage',
|
707 |
+
706: 'patio, terrace',
|
708 |
+
707: 'pay-phone, pay-station',
|
709 |
+
708: 'pedestal, plinth, footstall',
|
710 |
+
709: 'pencil box, pencil case',
|
711 |
+
710: 'pencil sharpener',
|
712 |
+
711: 'perfume, essence',
|
713 |
+
712: 'Petri dish',
|
714 |
+
713: 'photocopier',
|
715 |
+
714: 'pick, plectrum, plectron',
|
716 |
+
715: 'pickelhaube',
|
717 |
+
716: 'picket fence, paling',
|
718 |
+
717: 'pickup, pickup truck',
|
719 |
+
718: 'pier',
|
720 |
+
719: 'piggy bank, penny bank',
|
721 |
+
720: 'pill bottle',
|
722 |
+
721: 'pillow',
|
723 |
+
722: 'ping-pong ball',
|
724 |
+
723: 'pinwheel',
|
725 |
+
724: 'pirate, pirate ship',
|
726 |
+
725: 'pitcher, ewer',
|
727 |
+
726: "plane, carpenter's plane, woodworking plane",
|
728 |
+
727: 'planetarium',
|
729 |
+
728: 'plastic bag',
|
730 |
+
729: 'plate rack',
|
731 |
+
730: 'plow, plough',
|
732 |
+
731: "plunger, plumber's helper",
|
733 |
+
732: 'Polaroid camera, Polaroid Land camera',
|
734 |
+
733: 'pole',
|
735 |
+
734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
|
736 |
+
735: 'poncho',
|
737 |
+
736: 'pool table, billiard table, snooker table',
|
738 |
+
737: 'pop bottle, soda bottle',
|
739 |
+
738: 'pot, flowerpot',
|
740 |
+
739: "potter's wheel",
|
741 |
+
740: 'power drill',
|
742 |
+
741: 'prayer rug, prayer mat',
|
743 |
+
742: 'printer',
|
744 |
+
743: 'prison, prison house',
|
745 |
+
744: 'projectile, missile',
|
746 |
+
745: 'projector',
|
747 |
+
746: 'puck, hockey puck',
|
748 |
+
747: 'punching bag, punch bag, punching ball, punchball',
|
749 |
+
748: 'purse',
|
750 |
+
749: 'quill, quill pen',
|
751 |
+
750: 'quilt, comforter, comfort, puff',
|
752 |
+
751: 'racer, race car, racing car',
|
753 |
+
752: 'racket, racquet',
|
754 |
+
753: 'radiator',
|
755 |
+
754: 'radio, wireless',
|
756 |
+
755: 'radio telescope, radio reflector',
|
757 |
+
756: 'rain barrel',
|
758 |
+
757: 'recreational vehicle, RV, R.V.',
|
759 |
+
758: 'reel',
|
760 |
+
759: 'reflex camera',
|
761 |
+
760: 'refrigerator, icebox',
|
762 |
+
761: 'remote control, remote',
|
763 |
+
762: 'restaurant, eating house, eating place, eatery',
|
764 |
+
763: 'revolver, six-gun, six-shooter',
|
765 |
+
764: 'rifle',
|
766 |
+
765: 'rocking chair, rocker',
|
767 |
+
766: 'rotisserie',
|
768 |
+
767: 'rubber eraser, rubber, pencil eraser',
|
769 |
+
768: 'rugby ball',
|
770 |
+
769: 'rule, ruler',
|
771 |
+
770: 'running shoe',
|
772 |
+
771: 'safe',
|
773 |
+
772: 'safety pin',
|
774 |
+
773: 'saltshaker, salt shaker',
|
775 |
+
774: 'sandal',
|
776 |
+
775: 'sarong',
|
777 |
+
776: 'sax, saxophone',
|
778 |
+
777: 'scabbard',
|
779 |
+
778: 'scale, weighing machine',
|
780 |
+
779: 'school bus',
|
781 |
+
780: 'schooner',
|
782 |
+
781: 'scoreboard',
|
783 |
+
782: 'screen, CRT screen',
|
784 |
+
783: 'screw',
|
785 |
+
784: 'screwdriver',
|
786 |
+
785: 'seat belt, seatbelt',
|
787 |
+
786: 'sewing machine',
|
788 |
+
787: 'shield, buckler',
|
789 |
+
788: 'shoe shop, shoe-shop, shoe store',
|
790 |
+
789: 'shoji',
|
791 |
+
790: 'shopping basket',
|
792 |
+
791: 'shopping cart',
|
793 |
+
792: 'shovel',
|
794 |
+
793: 'shower cap',
|
795 |
+
794: 'shower curtain',
|
796 |
+
795: 'ski',
|
797 |
+
796: 'ski mask',
|
798 |
+
797: 'sleeping bag',
|
799 |
+
798: 'slide rule, slipstick',
|
800 |
+
799: 'sliding door',
|
801 |
+
800: 'slot, one-armed bandit',
|
802 |
+
801: 'snorkel',
|
803 |
+
802: 'snowmobile',
|
804 |
+
803: 'snowplow, snowplough',
|
805 |
+
804: 'soap dispenser',
|
806 |
+
805: 'soccer ball',
|
807 |
+
806: 'sock',
|
808 |
+
807: 'solar dish, solar collector, solar furnace',
|
809 |
+
808: 'sombrero',
|
810 |
+
809: 'soup bowl',
|
811 |
+
810: 'space bar',
|
812 |
+
811: 'space heater',
|
813 |
+
812: 'space shuttle',
|
814 |
+
813: 'spatula',
|
815 |
+
814: 'speedboat',
|
816 |
+
815: "spider web, spider's web",
|
817 |
+
816: 'spindle',
|
818 |
+
817: 'sports car, sport car',
|
819 |
+
818: 'spotlight, spot',
|
820 |
+
819: 'stage',
|
821 |
+
820: 'steam locomotive',
|
822 |
+
821: 'steel arch bridge',
|
823 |
+
822: 'steel drum',
|
824 |
+
823: 'stethoscope',
|
825 |
+
824: 'stole',
|
826 |
+
825: 'stone wall',
|
827 |
+
826: 'stopwatch, stop watch',
|
828 |
+
827: 'stove',
|
829 |
+
828: 'strainer',
|
830 |
+
829: 'streetcar, tram, tramcar, trolley, trolley car',
|
831 |
+
830: 'stretcher',
|
832 |
+
831: 'studio couch, day bed',
|
833 |
+
832: 'stupa, tope',
|
834 |
+
833: 'submarine, pigboat, sub, U-boat',
|
835 |
+
834: 'suit, suit of clothes',
|
836 |
+
835: 'sundial',
|
837 |
+
836: 'sunglass',
|
838 |
+
837: 'sunglasses, dark glasses, shades',
|
839 |
+
838: 'sunscreen, sunblock, sun blocker',
|
840 |
+
839: 'suspension bridge',
|
841 |
+
840: 'swab, swob, mop',
|
842 |
+
841: 'sweatshirt',
|
843 |
+
842: 'swimming trunks, bathing trunks',
|
844 |
+
843: 'swing',
|
845 |
+
844: 'switch, electric switch, electrical switch',
|
846 |
+
845: 'syringe',
|
847 |
+
846: 'table lamp',
|
848 |
+
847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
|
849 |
+
848: 'tape player',
|
850 |
+
849: 'teapot',
|
851 |
+
850: 'teddy, teddy bear',
|
852 |
+
851: 'television, television system',
|
853 |
+
852: 'tennis ball',
|
854 |
+
853: 'thatch, thatched roof',
|
855 |
+
854: 'theater curtain, theatre curtain',
|
856 |
+
855: 'thimble',
|
857 |
+
856: 'thresher, thrasher, threshing machine',
|
858 |
+
857: 'throne',
|
859 |
+
858: 'tile roof',
|
860 |
+
859: 'toaster',
|
861 |
+
860: 'tobacco shop, tobacconist shop, tobacconist',
|
862 |
+
861: 'toilet seat',
|
863 |
+
862: 'torch',
|
864 |
+
863: 'totem pole',
|
865 |
+
864: 'tow truck, tow car, wrecker',
|
866 |
+
865: 'toyshop',
|
867 |
+
866: 'tractor',
|
868 |
+
867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
|
869 |
+
868: 'tray',
|
870 |
+
869: 'trench coat',
|
871 |
+
870: 'tricycle, trike, velocipede',
|
872 |
+
871: 'trimaran',
|
873 |
+
872: 'tripod',
|
874 |
+
873: 'triumphal arch',
|
875 |
+
874: 'trolleybus, trolley coach, trackless trolley',
|
876 |
+
875: 'trombone',
|
877 |
+
876: 'tub, vat',
|
878 |
+
877: 'turnstile',
|
879 |
+
878: 'typewriter keyboard',
|
880 |
+
879: 'umbrella',
|
881 |
+
880: 'unicycle, monocycle',
|
882 |
+
881: 'upright, upright piano',
|
883 |
+
882: 'vacuum, vacuum cleaner',
|
884 |
+
883: 'vase',
|
885 |
+
884: 'vault',
|
886 |
+
885: 'velvet',
|
887 |
+
886: 'vending machine',
|
888 |
+
887: 'vestment',
|
889 |
+
888: 'viaduct',
|
890 |
+
889: 'violin, fiddle',
|
891 |
+
890: 'volleyball',
|
892 |
+
891: 'waffle iron',
|
893 |
+
892: 'wall clock',
|
894 |
+
893: 'wallet, billfold, notecase, pocketbook',
|
895 |
+
894: 'wardrobe, closet, press',
|
896 |
+
895: 'warplane, military plane',
|
897 |
+
896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
|
898 |
+
897: 'washer, automatic washer, washing machine',
|
899 |
+
898: 'water bottle',
|
900 |
+
899: 'water jug',
|
901 |
+
900: 'water tower',
|
902 |
+
901: 'whiskey jug',
|
903 |
+
902: 'whistle',
|
904 |
+
903: 'wig',
|
905 |
+
904: 'window screen',
|
906 |
+
905: 'window shade',
|
907 |
+
906: 'Windsor tie',
|
908 |
+
907: 'wine bottle',
|
909 |
+
908: 'wing',
|
910 |
+
909: 'wok',
|
911 |
+
910: 'wooden spoon',
|
912 |
+
911: 'wool, woolen, woollen',
|
913 |
+
912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
|
914 |
+
913: 'wreck',
|
915 |
+
914: 'yawl',
|
916 |
+
915: 'yurt',
|
917 |
+
916: 'web site, website, internet site, site',
|
918 |
+
917: 'comic book',
|
919 |
+
918: 'crossword puzzle, crossword',
|
920 |
+
919: 'street sign',
|
921 |
+
920: 'traffic light, traffic signal, stoplight',
|
922 |
+
921: 'book jacket, dust cover, dust jacket, dust wrapper',
|
923 |
+
922: 'menu',
|
924 |
+
923: 'plate',
|
925 |
+
924: 'guacamole',
|
926 |
+
925: 'consomme',
|
927 |
+
926: 'hot pot, hotpot',
|
928 |
+
927: 'trifle',
|
929 |
+
928: 'ice cream, icecream',
|
930 |
+
929: 'ice lolly, lolly, lollipop, popsicle',
|
931 |
+
930: 'French loaf',
|
932 |
+
931: 'bagel, beigel',
|
933 |
+
932: 'pretzel',
|
934 |
+
933: 'cheeseburger',
|
935 |
+
934: 'hotdog, hot dog, red hot',
|
936 |
+
935: 'mashed potato',
|
937 |
+
936: 'head cabbage',
|
938 |
+
937: 'broccoli',
|
939 |
+
938: 'cauliflower',
|
940 |
+
939: 'zucchini, courgette',
|
941 |
+
940: 'spaghetti squash',
|
942 |
+
941: 'acorn squash',
|
943 |
+
942: 'butternut squash',
|
944 |
+
943: 'cucumber, cuke',
|
945 |
+
944: 'artichoke, globe artichoke',
|
946 |
+
945: 'bell pepper',
|
947 |
+
946: 'cardoon',
|
948 |
+
947: 'mushroom',
|
949 |
+
948: 'Granny Smith',
|
950 |
+
949: 'strawberry',
|
951 |
+
950: 'orange',
|
952 |
+
951: 'lemon',
|
953 |
+
952: 'fig',
|
954 |
+
953: 'pineapple, ananas',
|
955 |
+
954: 'banana',
|
956 |
+
955: 'jackfruit, jak, jack',
|
957 |
+
956: 'custard apple',
|
958 |
+
957: 'pomegranate',
|
959 |
+
958: 'hay',
|
960 |
+
959: 'carbonara',
|
961 |
+
960: 'chocolate sauce, chocolate syrup',
|
962 |
+
961: 'dough',
|
963 |
+
962: 'meat loaf, meatloaf',
|
964 |
+
963: 'pizza, pizza pie',
|
965 |
+
964: 'potpie',
|
966 |
+
965: 'burrito',
|
967 |
+
966: 'red wine',
|
968 |
+
967: 'espresso',
|
969 |
+
968: 'cup',
|
970 |
+
969: 'eggnog',
|
971 |
+
970: 'alp',
|
972 |
+
971: 'bubble',
|
973 |
+
972: 'cliff, drop, drop-off',
|
974 |
+
973: 'coral reef',
|
975 |
+
974: 'geyser',
|
976 |
+
975: 'lakeside, lakeshore',
|
977 |
+
976: 'promontory, headland, head, foreland',
|
978 |
+
977: 'sandbar, sand bar',
|
979 |
+
978: 'seashore, coast, seacoast, sea-coast',
|
980 |
+
979: 'valley, vale',
|
981 |
+
980: 'volcano',
|
982 |
+
981: 'ballplayer, baseball player',
|
983 |
+
982: 'groom, bridegroom',
|
984 |
+
983: 'scuba diver',
|
985 |
+
984: 'rapeseed',
|
986 |
+
985: 'daisy',
|
987 |
+
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
|
988 |
+
987: 'corn',
|
989 |
+
988: 'acorn',
|
990 |
+
989: 'hip, rose hip, rosehip',
|
991 |
+
990: 'buckeye, horse chestnut, conker',
|
992 |
+
991: 'coral fungus',
|
993 |
+
992: 'agaric',
|
994 |
+
993: 'gyromitra',
|
995 |
+
994: 'stinkhorn, carrion fungus',
|
996 |
+
995: 'earthstar',
|
997 |
+
996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
|
998 |
+
997: 'bolete',
|
999 |
+
998: 'ear, spike, capitulum',
|
1000 |
+
999: 'toilet tissue, toilet paper, bathroom tissue'}
|
modelguidedattacks/data/registry.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from mmpretrain import datasets as mmdatasets
|
5 |
+
from mmpretrain.registry import TRANSFORMS
|
6 |
+
from mmengine.dataset import Compose
|
7 |
+
|
8 |
+
from torch import nn
|
9 |
+
from torch.utils.data import Dataset as TorchDataset
|
10 |
+
|
11 |
+
# This holds dataset instantiation functions by (dataset_name) tuple keys
|
12 |
+
DATASET_REGISTRY = {}
|
13 |
+
DATASET_PATH = "./datasets"
|
14 |
+
|
15 |
+
class MMPretrainWrapper(TorchDataset):
|
16 |
+
def __init__(self, mmdataset) -> None:
|
17 |
+
super().__init__()
|
18 |
+
self.mmdataset = mmdataset
|
19 |
+
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(type='ResizeEdge', scale=256, edge='short'),
|
23 |
+
dict(type='CenterCrop', crop_size=224),
|
24 |
+
dict(type='PackInputs'),
|
25 |
+
]
|
26 |
+
|
27 |
+
self.pipeline = self.init_pipeline(test_pipeline)
|
28 |
+
|
29 |
+
def init_pipeline(self, pipeline_cfg):
|
30 |
+
pipeline = Compose(
|
31 |
+
[TRANSFORMS.build(t) for t in pipeline_cfg])
|
32 |
+
return pipeline
|
33 |
+
|
34 |
+
@property
|
35 |
+
def classes(self):
|
36 |
+
return self.mmdataset.CLASSES
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.mmdataset)
|
40 |
+
|
41 |
+
def __getitem__(self, index):
|
42 |
+
sample = self.mmdataset[index]
|
43 |
+
sample = self.pipeline(sample)
|
44 |
+
|
45 |
+
# Our interface expects images in [0-1]
|
46 |
+
img = sample["inputs"].float() / 255
|
47 |
+
|
48 |
+
return img, sample["data_samples"].gt_label.item()
|
49 |
+
|
50 |
+
|
51 |
+
def register_torchvision_dataset(dataset_name, dataset_cls, dataset_kwargs_train={}, dataset_kwargs_val={}):
|
52 |
+
def instantiate_dataset():
|
53 |
+
train_data = dataset_cls(
|
54 |
+
root=DATASET_PATH,
|
55 |
+
train=True,
|
56 |
+
download=True,
|
57 |
+
transform=T.ToTensor()
|
58 |
+
)
|
59 |
+
|
60 |
+
val_data = dataset_cls(
|
61 |
+
root=DATASET_PATH,
|
62 |
+
train=False,
|
63 |
+
download=True,
|
64 |
+
transform=T.ToTensor()
|
65 |
+
)
|
66 |
+
|
67 |
+
return train_data, val_data
|
68 |
+
|
69 |
+
DATASET_REGISTRY[dataset_name] = instantiate_dataset
|
70 |
+
|
71 |
+
def register_mmpretrain_dataset(dataset_name, dataset_cls, dataset_kwargs_train={}, dataset_kwargs_val={}):
|
72 |
+
def instantiate_dataset():
|
73 |
+
train_data = dataset_cls(**dataset_kwargs_train)
|
74 |
+
val_data = dataset_cls(**dataset_kwargs_val)
|
75 |
+
|
76 |
+
train_data = MMPretrainWrapper(train_data)
|
77 |
+
val_data = MMPretrainWrapper(val_data)
|
78 |
+
|
79 |
+
return train_data, val_data
|
80 |
+
|
81 |
+
DATASET_REGISTRY[dataset_name] = instantiate_dataset
|
82 |
+
|
83 |
+
def register_default_datasets():
|
84 |
+
register_torchvision_dataset("cifar10", torchvision.datasets.CIFAR10)
|
85 |
+
register_torchvision_dataset("cifar100", torchvision.datasets.CIFAR100)
|
86 |
+
register_mmpretrain_dataset("imagenet", mmdatasets.ImageNet,
|
87 |
+
dataset_kwargs_train=dict(
|
88 |
+
data_root = "data/imagenet",
|
89 |
+
data_prefix = "val",
|
90 |
+
ann_file = "meta/val.txt"
|
91 |
+
),
|
92 |
+
dataset_kwargs_val=dict(
|
93 |
+
data_root = "data/imagenet",
|
94 |
+
data_prefix = "val",
|
95 |
+
ann_file = "meta/val.txt"
|
96 |
+
))
|
97 |
+
|
98 |
+
def get_dataset(dataset_name):
|
99 |
+
"""
|
100 |
+
Returns an instance of a dataset
|
101 |
+
|
102 |
+
dataset_name: Name of desired dataset
|
103 |
+
"""
|
104 |
+
|
105 |
+
if dataset_name not in DATASET_REGISTRY:
|
106 |
+
raise Exception("Requested dataset not in registry")
|
107 |
+
|
108 |
+
return DATASET_REGISTRY[dataset_name]()
|
modelguidedattacks/data/setup.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import ignite.distributed as idist
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as T
|
7 |
+
from torch.utils import data as torch_data
|
8 |
+
|
9 |
+
from .classification_wrapper import TopKClassificationWrapper
|
10 |
+
from torch.utils.data import Subset
|
11 |
+
from modelguidedattacks.data import get_dataset
|
12 |
+
from modelguidedattacks.cls_models.accuracy import get_correct_subset_for_models, DATASET_METADATA_DIR
|
13 |
+
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
def get_gt_labels(dataset: TopKClassificationWrapper, train:bool, dataset_name:str):
|
17 |
+
training_str = "train" if train else "val"
|
18 |
+
save_name = os.path.join(DATASET_METADATA_DIR, f"{dataset_name}_labels_{training_str}.p")
|
19 |
+
|
20 |
+
if os.path.exists(save_name):
|
21 |
+
print ("Found labels cache")
|
22 |
+
return torch.load(save_name)
|
23 |
+
|
24 |
+
dataloader = torch_data.DataLoader(dataset, batch_size=128, shuffle=False, num_workers=4)
|
25 |
+
|
26 |
+
gt_labels = []
|
27 |
+
|
28 |
+
for batch in tqdm(dataloader):
|
29 |
+
gt_labels.extend(batch[1].tolist())
|
30 |
+
|
31 |
+
gt_labels = torch.tensor(gt_labels)
|
32 |
+
|
33 |
+
torch.save(gt_labels, save_name)
|
34 |
+
|
35 |
+
return gt_labels
|
36 |
+
|
37 |
+
def class_balanced_sampling(dataset, gt_labels: torch.Tensor,
|
38 |
+
correct_labels: list, total_samples=1000):
|
39 |
+
num_classes = len(dataset.classes)
|
40 |
+
|
41 |
+
correct_labels = torch.tensor(correct_labels)
|
42 |
+
correct_mask = torch.zeros((len(dataset), ), dtype=torch.bool)
|
43 |
+
correct_mask[correct_labels] = True
|
44 |
+
|
45 |
+
sampled_indices = 0
|
46 |
+
|
47 |
+
total_sampled_indices = 0
|
48 |
+
sampled_indices = [[] for i in range(num_classes)]
|
49 |
+
|
50 |
+
shuffled_inds = torch.randperm(len(dataset))
|
51 |
+
|
52 |
+
for sample_cnt, sample_i in enumerate(shuffled_inds):
|
53 |
+
if not correct_mask[sample_i]:
|
54 |
+
continue
|
55 |
+
|
56 |
+
sample_class = gt_labels[sample_i]
|
57 |
+
desired_samples_in_class = (total_sampled_indices // num_classes) + 1
|
58 |
+
|
59 |
+
if len(sampled_indices[sample_class]) < desired_samples_in_class:
|
60 |
+
sampled_indices[sample_class].append(sample_i.item())
|
61 |
+
total_sampled_indices += 1
|
62 |
+
|
63 |
+
if total_sampled_indices >= total_samples:
|
64 |
+
break
|
65 |
+
|
66 |
+
flattened_indices = []
|
67 |
+
for class_samples in sampled_indices:
|
68 |
+
flattened_indices.extend(class_samples)
|
69 |
+
|
70 |
+
return torch.tensor(flattened_indices)
|
71 |
+
|
72 |
+
def sample_attack_labels(dataset, gt_labels, k, sampler):
|
73 |
+
"""
|
74 |
+
dataset: Dataset we're generating attack labels for
|
75 |
+
gt_labels: List of gt idx for each sample in a dataset
|
76 |
+
k: attack size
|
77 |
+
sampler: ["random"]
|
78 |
+
"""
|
79 |
+
|
80 |
+
# Sample from uniform and argsort to simulate
|
81 |
+
# a batched randperm
|
82 |
+
attack_label_uniforms = torch.rand((len(gt_labels), len(dataset.classes)))
|
83 |
+
|
84 |
+
# We don't want to sample the gt class for any samples
|
85 |
+
batch_inds = torch.arange(len(gt_labels))
|
86 |
+
attack_label_uniforms[batch_inds, gt_labels] = -1.
|
87 |
+
|
88 |
+
attack_labels = attack_label_uniforms.argsort(dim=-1, descending=True)[:, :k]
|
89 |
+
|
90 |
+
return attack_labels
|
91 |
+
|
92 |
+
def setup_data(config: Any, rank):
|
93 |
+
"""Download datasets and create dataloaders
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
config: needs to contain `data_path`, `train_batch_size`, `eval_batch_size`, and `num_workers`
|
98 |
+
"""
|
99 |
+
|
100 |
+
dataset_train, dataset_eval = get_dataset(config.dataset)
|
101 |
+
|
102 |
+
train_subset = None
|
103 |
+
val_subset = None
|
104 |
+
|
105 |
+
attack_labels_train = None
|
106 |
+
attack_labels_val = None
|
107 |
+
|
108 |
+
if rank == 0:
|
109 |
+
gt_labels_train = get_gt_labels(dataset_train, True, config.dataset)
|
110 |
+
gt_labels_val = get_gt_labels(dataset_eval, False, config.dataset)
|
111 |
+
|
112 |
+
attack_labels_train = sample_attack_labels(dataset_train, gt_labels_train, k=config.k,
|
113 |
+
sampler=config.attack_sampling)
|
114 |
+
attack_labels_val = sample_attack_labels(dataset_eval, gt_labels_val, k=config.k,
|
115 |
+
sampler=config.attack_sampling)
|
116 |
+
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
correct_train_set = get_correct_subset_for_models(config.compare_models,
|
119 |
+
config.dataset, device,
|
120 |
+
train=True)
|
121 |
+
|
122 |
+
correct_eval_set = get_correct_subset_for_models(config.compare_models,
|
123 |
+
config.dataset, device,
|
124 |
+
train=False)
|
125 |
+
|
126 |
+
# Balanced sampling
|
127 |
+
train_subset = class_balanced_sampling(dataset_train, gt_labels_train,
|
128 |
+
correct_train_set)
|
129 |
+
|
130 |
+
val_subset = class_balanced_sampling(dataset_eval, gt_labels_val,
|
131 |
+
correct_eval_set)
|
132 |
+
|
133 |
+
if config.overfit:
|
134 |
+
rand_inds = torch.randperm(len(val_subset))[:16]
|
135 |
+
train_subset = train_subset[rand_inds]
|
136 |
+
val_subset = val_subset[rand_inds]
|
137 |
+
|
138 |
+
train_subset = idist.broadcast(train_subset, safe_mode=True)
|
139 |
+
val_subset = idist.broadcast(val_subset, safe_mode=True)
|
140 |
+
|
141 |
+
attack_labels_train = idist.broadcast(attack_labels_train, safe_mode=True)
|
142 |
+
attack_labels_val = idist.broadcast(attack_labels_val, safe_mode=True)
|
143 |
+
|
144 |
+
dataset_train = TopKClassificationWrapper(dataset_train, k=config.k,
|
145 |
+
attack_labels=attack_labels_train)
|
146 |
+
dataset_eval = TopKClassificationWrapper(dataset_eval, k=config.k,
|
147 |
+
attack_labels=attack_labels_val)
|
148 |
+
|
149 |
+
dataset_train = Subset(dataset_train, train_subset)
|
150 |
+
dataset_eval = Subset(dataset_eval, val_subset)
|
151 |
+
|
152 |
+
# if config.overfit:
|
153 |
+
# dataset_train = Subset(dataset_train, range(2))
|
154 |
+
# dataset_eval = dataset_train
|
155 |
+
# else:
|
156 |
+
# dataset_eval = Subset(dataset_eval, torch.randperm(len(dataset_eval))[:1000].tolist() )
|
157 |
+
|
158 |
+
dataloader_train = idist.auto_dataloader(
|
159 |
+
dataset_train,
|
160 |
+
batch_size=config.train_batch_size,
|
161 |
+
shuffle=not config.overfit,
|
162 |
+
num_workers=config.num_workers,
|
163 |
+
)
|
164 |
+
dataloader_eval = idist.auto_dataloader(
|
165 |
+
dataset_eval,
|
166 |
+
batch_size=config.eval_batch_size,
|
167 |
+
shuffle=True,
|
168 |
+
num_workers=config.num_workers,
|
169 |
+
)
|
170 |
+
return dataloader_train, dataloader_eval
|
modelguidedattacks/guides/instance_guide.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torchvision.ops import MLP
|
4 |
+
|
5 |
+
from .. import losses
|
6 |
+
|
7 |
+
class InstanceGuide(nn.Module):
|
8 |
+
def __init__(self, model: nn.Module, optimizer=torch.optim.AdamW, loss_fn=losses.CWExtensionLoss) -> None:
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.guided = True
|
12 |
+
self.model = model
|
13 |
+
|
14 |
+
|
15 |
+
for p in self.model.parameters():
|
16 |
+
p.requires_grad_(False)
|
17 |
+
|
18 |
+
self.loss = loss_fn()
|
19 |
+
self.optimizer = optimizer
|
20 |
+
|
21 |
+
self.epochs = 30
|
22 |
+
self.mlp_iterations = 5
|
23 |
+
self.perturbation_iterations = 5
|
24 |
+
|
25 |
+
def surject_perturbation(self, x):
|
26 |
+
return x
|
27 |
+
|
28 |
+
def forward(self, x, attack_targets):
|
29 |
+
"""
|
30 |
+
x: [B, channels, H, W]
|
31 |
+
attack_targets: [B, K]
|
32 |
+
"""
|
33 |
+
|
34 |
+
B = x.shape[0]
|
35 |
+
K = attack_targets.shape[-1]
|
36 |
+
C = self.model.num_classes()
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
pred_clean, feats = self.model(x, return_features=True)
|
40 |
+
|
41 |
+
# We are assuming the clean predictions are ground truth since we make that
|
42 |
+
# constraint on the dataset side
|
43 |
+
attack_ground_truth = pred_clean.argmax(dim=-1) # [B]
|
44 |
+
|
45 |
+
mlp = MLP(self.model.head_features(),
|
46 |
+
[self.model.head_features()]*3 + [self.model.head_features()],
|
47 |
+
activation_layer=nn.GELU, inplace=None).to(x.device)
|
48 |
+
|
49 |
+
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
50 |
+
device=x.device)*1e-3)
|
51 |
+
|
52 |
+
perturbation_optimizer = self.optimizer([x_perturbation], lr=1e-1)
|
53 |
+
|
54 |
+
mlp_optimizer = self.optimizer(mlp.parameters(), lr=1e-3)
|
55 |
+
|
56 |
+
logits_target_best = pred_clean
|
57 |
+
feats_target_best = feats
|
58 |
+
|
59 |
+
with torch.enable_grad():
|
60 |
+
for i in range(self.epochs):
|
61 |
+
for _ in range(self.mlp_iterations):
|
62 |
+
torch.cuda.synchronize()
|
63 |
+
|
64 |
+
feature_offset = mlp(feats)
|
65 |
+
feats_target_pred = feature_offset + feats
|
66 |
+
logits_target_pred = self.model.head(feats_target_pred)
|
67 |
+
# logits_target_pred = pred_logits
|
68 |
+
pred_classes = logits_target_pred.argsort(dim=-1, descending=True) # [B, C]
|
69 |
+
attack_successful = (pred_classes[:, :K] == attack_targets).all(dim=-1) # [B]
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
logits_target_best = torch.where(
|
73 |
+
attack_successful[:, None].expand(-1, C),
|
74 |
+
logits_target_pred,
|
75 |
+
logits_target_best
|
76 |
+
)
|
77 |
+
|
78 |
+
feats_target_best = torch.where(
|
79 |
+
attack_successful[:, None].expand(-1, self.model.head_features()),
|
80 |
+
feats_target_pred,
|
81 |
+
feats_target_best
|
82 |
+
)
|
83 |
+
|
84 |
+
mlp_loss = self.loss(logits_pred=logits_target_pred,
|
85 |
+
prediction_feats=feats_target_pred,
|
86 |
+
attack_targets=attack_targets,
|
87 |
+
attack_ground_truth=attack_ground_truth,
|
88 |
+
model=self.model)
|
89 |
+
mlp_loss = mlp_loss.mean() + feature_offset.view(B, -1).norm(dim=-1, p=2)*1
|
90 |
+
|
91 |
+
mlp_optimizer.zero_grad()
|
92 |
+
mlp_loss.backward()
|
93 |
+
mlp_optimizer.step()
|
94 |
+
|
95 |
+
feats_target_best = feats_target_best.detach()
|
96 |
+
|
97 |
+
for _ in range(self.perturbation_iterations):
|
98 |
+
x_perturbed = x + self.surject_perturbation(x_perturbation)
|
99 |
+
prediction, perturbed_feats = self.model(x_perturbed, return_features=True)
|
100 |
+
pred_classes = prediction.argsort(dim=-1, descending=True) # [B, C]
|
101 |
+
attack_successful = (pred_classes[:, :K] == attack_targets).all(dim=-1) # [B]
|
102 |
+
|
103 |
+
perturbation_loss = (prediction - logits_target_best).view(B, -1).norm(dim=-1).mean()
|
104 |
+
|
105 |
+
perturbation_optimizer.zero_grad()
|
106 |
+
perturbation_loss.backward()
|
107 |
+
perturbation_optimizer.step()
|
108 |
+
|
109 |
+
return prediction
|
modelguidedattacks/guides/unguided.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from .. import losses
|
4 |
+
import ignite.distributed as idist
|
5 |
+
import torch_optimizer
|
6 |
+
from tqdm import tqdm
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import os
|
10 |
+
|
11 |
+
import shutil
|
12 |
+
from modelguidedattacks.cls_models.registry import MMPretrainVisualTransformerWrapper
|
13 |
+
from modelguidedattacks.data.imagenet_metadata import imgnet_idx_to_name
|
14 |
+
|
15 |
+
class Unguided(nn.Module):
|
16 |
+
def __init__(self, model: nn.Module, config, optimizer=torch.optim.AdamW, seed=0, iterations=1000,
|
17 |
+
loss_fn=losses.CVXProjLoss, lr=1e-3,
|
18 |
+
binary_search_steps=1, topk_loss_coef_upper=10.,
|
19 |
+
topk_loss_coef_lower=0.) -> None:
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.guided = False
|
23 |
+
self.model = model
|
24 |
+
self.seed = seed
|
25 |
+
self.iterations = iterations
|
26 |
+
self.loss = loss_fn()
|
27 |
+
self.optimizer = optimizer
|
28 |
+
self.lr = lr
|
29 |
+
|
30 |
+
self.binary_search_steps = binary_search_steps
|
31 |
+
self.topk_loss_coef_upper = topk_loss_coef_upper
|
32 |
+
self.topk_loss_coef_lower = topk_loss_coef_lower
|
33 |
+
self.config = config
|
34 |
+
|
35 |
+
def surject_perturbation(self, x, max_norm=5.):
|
36 |
+
x_shape = x.shape
|
37 |
+
|
38 |
+
x = x.flatten(1)
|
39 |
+
x_norm = x.norm(dim=-1)
|
40 |
+
x_unit = x / x_norm[:, None]
|
41 |
+
|
42 |
+
x_norm_outside = x_norm > max_norm
|
43 |
+
x_norm_outside = x_norm_outside.expand_as(x)
|
44 |
+
|
45 |
+
x = torch.where(x_norm_outside, x_unit*max_norm, x)
|
46 |
+
|
47 |
+
return x.view(x_shape)
|
48 |
+
|
49 |
+
@torch.enable_grad()
|
50 |
+
def attack(self, x, attack_targets, gt_labels, topk_coefs):
|
51 |
+
"""
|
52 |
+
For a given set of topk coefficients, this function computes
|
53 |
+
best energy attack in the given number of iterations and configuration
|
54 |
+
|
55 |
+
x: [B, C, H, W] [0-1 for colors]
|
56 |
+
attack_targets: [B, K] (long)
|
57 |
+
gt_labels: [B] (long)
|
58 |
+
topk_coefs: [B] (floats)
|
59 |
+
"""
|
60 |
+
|
61 |
+
topk_coefs = topk_coefs.clone()
|
62 |
+
K = attack_targets.shape[-1]
|
63 |
+
|
64 |
+
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
65 |
+
device=x.device)*2e-3)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
prediction_logits_0, prediction_feats_0 \
|
69 |
+
= self.model(x, return_features=True)
|
70 |
+
|
71 |
+
best_perturbations = torch.zeros_like(x) # [B, 3, H, W]
|
72 |
+
has_successful_attack = torch.zeros(x.shape[0], dtype=torch.long, device=x.device) # [B]
|
73 |
+
best_energy = torch.full((x.shape[0],), float('inf'), device=x.device) # [B]
|
74 |
+
|
75 |
+
pbar = tqdm(range(self.iterations))
|
76 |
+
|
77 |
+
for i in pbar:
|
78 |
+
|
79 |
+
if i == self.config.opt_warmup_its:
|
80 |
+
# Reset optimizer state
|
81 |
+
optimizer = self.optimizer([x_perturbation], lr=self.lr)
|
82 |
+
|
83 |
+
x_perturbed = x + x_perturbation#self.surject_perturbation(x_perturbation)
|
84 |
+
prediction_logits, prediction_feats = self.model(x_perturbed, return_features=True)
|
85 |
+
|
86 |
+
pred_classes = prediction_logits.argsort(dim=-1, descending=True) # [B, C]
|
87 |
+
attack_successful = (pred_classes[:, :K] == attack_targets).all(dim=-1) # [B]
|
88 |
+
attack_energy = x_perturbation.flatten(1).norm(dim=-1) # [B]
|
89 |
+
|
90 |
+
attack_improved = attack_successful & (attack_energy <= best_energy)
|
91 |
+
|
92 |
+
best_perturbations[attack_improved] = x_perturbation[attack_improved]
|
93 |
+
has_successful_attack[attack_improved] = True
|
94 |
+
best_energy[attack_improved] = attack_energy[attack_improved]
|
95 |
+
|
96 |
+
loss = self.loss(logits_pred=prediction_logits,
|
97 |
+
feats_pred=prediction_feats,
|
98 |
+
feats_pred_0=prediction_feats_0,
|
99 |
+
attack_targets=attack_targets,
|
100 |
+
model=self.model, **precomputed_state)
|
101 |
+
|
102 |
+
loss = loss * topk_coefs
|
103 |
+
|
104 |
+
loss = loss.sum()
|
105 |
+
|
106 |
+
pbar.set_description(f"Loss: {loss.item():.3f}")
|
107 |
+
|
108 |
+
loss = loss + x_perturbation.flatten(1).square().sum()
|
109 |
+
|
110 |
+
optimizer.zero_grad()
|
111 |
+
loss.backward()
|
112 |
+
optimizer.step()
|
113 |
+
|
114 |
+
# If we were successfull let's start taking the norm down
|
115 |
+
topk_coefs[attack_improved] *= 0.75
|
116 |
+
|
117 |
+
# Project perturbation to be within image limits
|
118 |
+
with torch.no_grad():
|
119 |
+
x_perturbed = x + x_perturbation
|
120 |
+
x_perturbed = x_perturbed.clamp_(min=0., max=1.)
|
121 |
+
|
122 |
+
x_perturbation.data = x_perturbed - x
|
123 |
+
|
124 |
+
x_perturbed_best = x + best_perturbations
|
125 |
+
prediction_logits, prediction_feats = self.model(x_perturbed_best, return_features=True)
|
126 |
+
|
127 |
+
if self.config.dump_plots:
|
128 |
+
if os.path.isdir(self.config.plot_out):
|
129 |
+
shutil.rmtree(self.config.plot_out)
|
130 |
+
|
131 |
+
if has_successful_attack.any():
|
132 |
+
def dump_random_map():
|
133 |
+
os.makedirs(self.config.plot_out, exist_ok=True)
|
134 |
+
|
135 |
+
# selected_idx = best_energy.argmin()
|
136 |
+
successful_idxs = has_successful_attack.nonzero()[:, 0]
|
137 |
+
|
138 |
+
if self.config.plot_idx == "find":
|
139 |
+
selected_idx = successful_idxs[torch.randperm(len(successful_idxs))[0]]
|
140 |
+
# selected_idx = best_energy.argmin()
|
141 |
+
else:
|
142 |
+
selected_idx = int(self.config.plot_idx)
|
143 |
+
|
144 |
+
print ("Selected idx", selected_idx)
|
145 |
+
|
146 |
+
top_classes = prediction_logits_0[selected_idx].argsort(dim=-1, descending=True)
|
147 |
+
attack_targets_selected = attack_targets[selected_idx]
|
148 |
+
|
149 |
+
def imgnet_names(idxs):
|
150 |
+
return [imgnet_idx_to_name[int(idx)].split(",")[0] for idx in idxs]
|
151 |
+
|
152 |
+
top_class_names = imgnet_names(top_classes)[:K]
|
153 |
+
attack_targets_selected_names = imgnet_names(attack_targets_selected)
|
154 |
+
|
155 |
+
def plot_attn_map(attn_map):
|
156 |
+
attn_map = attn_map[0].mean(dim=0)[1:] # [196] get class tokens
|
157 |
+
attn_map = attn_map.view(14, 14)
|
158 |
+
attn_map = F.interpolate(
|
159 |
+
attn_map[None, None],
|
160 |
+
x.shape[-2:],
|
161 |
+
mode="bilinear"
|
162 |
+
).view(x.shape[-2:])
|
163 |
+
|
164 |
+
plt.imshow(attn_map.detach().cpu(), alpha=0.5)
|
165 |
+
|
166 |
+
plt.figure()
|
167 |
+
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
|
168 |
+
plt.axis("off")
|
169 |
+
plt.savefig(f"{self.config.plot_out}/clean_image.png", bbox_inches="tight", pad_inches=0)
|
170 |
+
|
171 |
+
plt.figure()
|
172 |
+
plt.imshow(x_perturbed_best[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
|
173 |
+
plt.axis("off")
|
174 |
+
plt.savefig(f"{self.config.plot_out}/perturbed_image.png", bbox_inches="tight", pad_inches=0)
|
175 |
+
|
176 |
+
plt.figure()
|
177 |
+
plt.imshow(best_perturbations[selected_idx].mean(dim=0).abs().detach().cpu(), cmap="hot")
|
178 |
+
plt.colorbar()
|
179 |
+
plt.savefig(f"{self.config.plot_out}/perturbation.png", bbox_inches="tight")
|
180 |
+
|
181 |
+
if isinstance(self.model, MMPretrainVisualTransformerWrapper):
|
182 |
+
attn_maps_clean = self.model.get_attention_maps(x)[-1][selected_idx]
|
183 |
+
attn_maps_attacked = self.model.get_attention_maps(x_perturbed_best)[-1][selected_idx]
|
184 |
+
|
185 |
+
plt.figure()
|
186 |
+
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
|
187 |
+
plot_attn_map(attn_maps_clean)
|
188 |
+
plt.axis("off")
|
189 |
+
plt.savefig(f"{self.config.plot_out}/clean_map.png", bbox_inches="tight", pad_inches=0)
|
190 |
+
|
191 |
+
plt.figure()
|
192 |
+
plt.imshow(x[selected_idx].permute(1,2,0).flip(dims=(-1,)).detach().cpu())
|
193 |
+
plot_attn_map(attn_maps_attacked)
|
194 |
+
plt.axis("off")
|
195 |
+
plt.savefig(f"{self.config.plot_out}/attacked_map.png", bbox_inches="tight", pad_inches=0)
|
196 |
+
|
197 |
+
with open(f'{self.config.plot_out}/clean_classes_names.txt', 'w') as f:
|
198 |
+
f.write(", ".join(top_class_names))
|
199 |
+
|
200 |
+
with open(f'{self.config.plot_out}/attack_targets_names.txt', 'w') as f:
|
201 |
+
f.write(", ".join(attack_targets_selected_names))
|
202 |
+
|
203 |
+
with open(f'{self.config.plot_out}/clean_classes_names.txt', 'w') as f:
|
204 |
+
f.write(", ".join(top_class_names))
|
205 |
+
|
206 |
+
with open(f'{self.config.plot_out}/selected_idx.txt', 'w') as f:
|
207 |
+
if isinstance(selected_idx, torch.Tensor):
|
208 |
+
selected_idx = selected_idx.item()
|
209 |
+
|
210 |
+
f.write(str(selected_idx))
|
211 |
+
|
212 |
+
with open(f'{self.config.plot_out}/energy.txt', 'w') as f:
|
213 |
+
f.write(str(best_energy[selected_idx].item()))
|
214 |
+
|
215 |
+
C = prediction_logits_0.shape[-1]
|
216 |
+
class_idxs = torch.arange(C) + 1
|
217 |
+
clean_probs = prediction_logits_0[selected_idx].detach().cpu().softmax(dim=-1)
|
218 |
+
attacked_probs = prediction_logits[selected_idx].detach().cpu().softmax(dim=-1)
|
219 |
+
|
220 |
+
def label_classes(bars):
|
221 |
+
adjusted_heights = {}
|
222 |
+
for i, cls_idx in enumerate(attack_targets_selected.tolist()):
|
223 |
+
bar = bars[cls_idx]
|
224 |
+
height = bar.get_height()
|
225 |
+
ann_x = bar.get_x() + bar.get_width()
|
226 |
+
|
227 |
+
rotation = 90
|
228 |
+
font_size = 10
|
229 |
+
|
230 |
+
max_neighboring_height = -1
|
231 |
+
for other_cls_idx in attack_targets_selected.tolist():
|
232 |
+
if abs(cls_idx - other_cls_idx) <= 40 and cls_idx != other_cls_idx:
|
233 |
+
if other_cls_idx in adjusted_heights and adjusted_heights[other_cls_idx] > max_neighboring_height:
|
234 |
+
max_neighboring_height = adjusted_heights[other_cls_idx]
|
235 |
+
|
236 |
+
if max_neighboring_height > 0:
|
237 |
+
height = max_neighboring_height + 0.05
|
238 |
+
|
239 |
+
adjusted_heights[cls_idx] = height
|
240 |
+
|
241 |
+
plt.text(ann_x, height, f"[{i}]", rotation=rotation,
|
242 |
+
ha='center', va='bottom', fontsize=font_size, color='red')#.get_bbox_patch().get_height()
|
243 |
+
|
244 |
+
|
245 |
+
plt.figure()
|
246 |
+
bars_clean = plt.bar(class_idxs, clean_probs, width=4)
|
247 |
+
plt.ylim(0,1)
|
248 |
+
label_classes(bars_clean)
|
249 |
+
plt.savefig(f"{self.config.plot_out}/clean_probs.png", bbox_inches="tight", pad_inches=0)
|
250 |
+
|
251 |
+
plt.figure()
|
252 |
+
bars_attacked = plt.bar(class_idxs, attacked_probs, width=4)
|
253 |
+
plt.ylim(0,1)
|
254 |
+
label_classes(bars_attacked)
|
255 |
+
plt.savefig(f"{self.config.plot_out}/attacked_probs.png", bbox_inches="tight", pad_inches=0)
|
256 |
+
|
257 |
+
print ("Idx", selected_idx)
|
258 |
+
print (best_energy[selected_idx])
|
259 |
+
print ("Finished plotting")
|
260 |
+
|
261 |
+
dump_random_map()
|
262 |
+
import sys
|
263 |
+
sys.exit(1)
|
264 |
+
print ("Dumped attention map")
|
265 |
+
|
266 |
+
|
267 |
+
return prediction_logits, best_perturbations, best_energy
|
268 |
+
|
269 |
+
def forward(self, x, attack_targets, gt_labels):
|
270 |
+
"""
|
271 |
+
This function is in charge of performing a binary search through
|
272 |
+
topk loss coefficients and running attacks on each.
|
273 |
+
"""
|
274 |
+
B = x.shape[0]
|
275 |
+
device = x.device
|
276 |
+
topk_coefs_lower = torch.full((B,), fill_value=self.topk_loss_coef_lower,
|
277 |
+
device=device, dtype=torch.float)
|
278 |
+
|
279 |
+
topk_coefs_upper = torch.full((B,), fill_value=self.topk_loss_coef_upper,
|
280 |
+
device=device, dtype=torch.float)
|
281 |
+
|
282 |
+
best_perturbations = torch.zeros_like(x) # [B, 3, H, W]
|
283 |
+
best_energy = torch.full((B,), float('inf'), device=device) # [B]
|
284 |
+
best_prediction_logits = None
|
285 |
+
|
286 |
+
for search_step_i in range(self.binary_search_steps):
|
287 |
+
if x.device.index is None or x.device.index == 0:
|
288 |
+
print ("Running binary search step", search_step_i + 1)
|
289 |
+
|
290 |
+
current_topk_coefs = (topk_coefs_lower + topk_coefs_upper) / 2
|
291 |
+
current_logits, current_perturbations, current_energy = \
|
292 |
+
self.attack(x, attack_targets, gt_labels, current_topk_coefs)
|
293 |
+
|
294 |
+
current_attack_suceeded = ~torch.isinf(current_energy)
|
295 |
+
|
296 |
+
update_mask = current_energy < best_energy
|
297 |
+
|
298 |
+
best_perturbations[update_mask] = current_perturbations[update_mask]
|
299 |
+
best_energy[update_mask] = current_energy[update_mask]
|
300 |
+
|
301 |
+
if best_prediction_logits is None:
|
302 |
+
best_prediction_logits = current_logits.clone()
|
303 |
+
else:
|
304 |
+
best_prediction_logits[update_mask] = current_logits[update_mask]
|
305 |
+
|
306 |
+
# If we fail to attack, we must increase our topk coef
|
307 |
+
topk_coefs_lower[~current_attack_suceeded] = current_topk_coefs[~current_attack_suceeded]
|
308 |
+
|
309 |
+
# If we succeed, we must lower to seek a more frugal attack
|
310 |
+
topk_coefs_upper[current_attack_suceeded] = current_topk_coefs[current_attack_suceeded]
|
311 |
+
|
312 |
+
idist.barrier()
|
313 |
+
|
314 |
+
return best_prediction_logits, best_perturbations
|
modelguidedattacks/losses/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .boilerplate import BoilerplateLoss
|
2 |
+
from .cw_extension import CWExtensionLoss
|
3 |
+
from .cvx_proj import CVXProjLoss
|
4 |
+
from .adversarial_distillation.ad_loss import AdversarialDistillationLoss
|
modelguidedattacks/losses/_qp_solver_patch.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import qpth
|
2 |
+
from qpth.solvers.pdipm import batch as pdipm_b
|
3 |
+
from qpth.solvers.pdipm.batch import *
|
4 |
+
|
5 |
+
def reduce_stats(z):
|
6 |
+
return z[~z.isnan()].median()
|
7 |
+
|
8 |
+
def forward(Q, p, G, h, A, b, Q_LU, S_LU, R, eps=1e-12, verbose=0, notImprovedLim=3,
|
9 |
+
maxIter=20, solver=KKTSolvers.LU_PARTIAL):
|
10 |
+
"""
|
11 |
+
Q_LU, S_LU, R = pre_factor_kkt(Q, G, A)
|
12 |
+
"""
|
13 |
+
nineq, nz, neq, nBatch = get_sizes(G, A)
|
14 |
+
|
15 |
+
# Find initial values
|
16 |
+
if solver == KKTSolvers.LU_FULL:
|
17 |
+
D = torch.eye(nineq).repeat(nBatch, 1, 1).type_as(Q)
|
18 |
+
x, s, z, y = factor_solve_kkt(
|
19 |
+
Q, D, G, A, p,
|
20 |
+
torch.zeros(nBatch, nineq).type_as(Q),
|
21 |
+
-h, -b if b is not None else None)
|
22 |
+
elif solver == KKTSolvers.LU_PARTIAL:
|
23 |
+
d = torch.ones(nBatch, nineq).type_as(Q)
|
24 |
+
factor_kkt(S_LU, R, d)
|
25 |
+
x, s, z, y = solve_kkt(
|
26 |
+
Q_LU, d, G, A, S_LU,
|
27 |
+
p, torch.zeros(nBatch, nineq).type_as(Q),
|
28 |
+
-h, -b if neq > 0 else None)
|
29 |
+
elif solver == KKTSolvers.IR_UNOPT:
|
30 |
+
D = torch.eye(nineq).repeat(nBatch, 1, 1).type_as(Q)
|
31 |
+
x, s, z, y = solve_kkt_ir(
|
32 |
+
Q, D, G, A, p,
|
33 |
+
torch.zeros(nBatch, nineq).type_as(Q),
|
34 |
+
-h, -b if b is not None else None)
|
35 |
+
else:
|
36 |
+
assert False
|
37 |
+
|
38 |
+
# Make all of the slack variables >= 1.
|
39 |
+
M = torch.min(s, 1)[0]
|
40 |
+
M = M.view(M.size(0), 1).repeat(1, nineq)
|
41 |
+
I = M < 0
|
42 |
+
s[I] -= M[I] - 1
|
43 |
+
|
44 |
+
# Make all of the inequality dual variables >= 1.
|
45 |
+
M = torch.min(z, 1)[0]
|
46 |
+
M = M.view(M.size(0), 1).repeat(1, nineq)
|
47 |
+
I = M < 0
|
48 |
+
z[I] -= M[I] - 1
|
49 |
+
|
50 |
+
best = {'resids': None, 'x': None, 'z': None, 's': None, 'y': None}
|
51 |
+
nNotImproved = 0
|
52 |
+
|
53 |
+
for i in range(maxIter):
|
54 |
+
# affine scaling direction
|
55 |
+
rx = (torch.bmm(y.unsqueeze(1), A).squeeze(1) if neq > 0 else 0.) + \
|
56 |
+
torch.bmm(z.unsqueeze(1), G).squeeze(1) + \
|
57 |
+
torch.bmm(x.unsqueeze(1), Q.transpose(1, 2)).squeeze(1) + \
|
58 |
+
p
|
59 |
+
rs = z
|
60 |
+
rz = torch.bmm(x.unsqueeze(1), G.transpose(1, 2)).squeeze(1) + s - h
|
61 |
+
ry = torch.bmm(x.unsqueeze(1), A.transpose(
|
62 |
+
1, 2)).squeeze(1) - b if neq > 0 else 0.0
|
63 |
+
mu = torch.abs((s * z).sum(1).squeeze() / nineq)
|
64 |
+
z_resid = torch.norm(rz, 2, 1).squeeze()
|
65 |
+
y_resid = torch.norm(ry, 2, 1).squeeze() if neq > 0 else 0
|
66 |
+
pri_resid = y_resid + z_resid
|
67 |
+
dual_resid = torch.norm(rx, 2, 1).squeeze()
|
68 |
+
resids = pri_resid + dual_resid + nineq * mu
|
69 |
+
|
70 |
+
d = z / s
|
71 |
+
try:
|
72 |
+
factor_kkt(S_LU, R, d)
|
73 |
+
except:
|
74 |
+
return best['x'], best['y'], best['z'], best['s']
|
75 |
+
|
76 |
+
if verbose == 1:
|
77 |
+
print('iter: {}, pri_resid: {:.5e}, dual_resid: {:.5e}, mu: {:.5e}'.format(
|
78 |
+
i, reduce_stats(pri_resid), reduce_stats(dual_resid), reduce_stats(mu)))
|
79 |
+
if best['resids'] is None:
|
80 |
+
best['resids'] = resids
|
81 |
+
best['x'] = x.clone()
|
82 |
+
best['z'] = z.clone()
|
83 |
+
best['s'] = s.clone()
|
84 |
+
best['y'] = y.clone() if y is not None else None
|
85 |
+
nNotImproved = 0
|
86 |
+
else:
|
87 |
+
I = resids < best['resids']
|
88 |
+
if I.sum() > 0:
|
89 |
+
nNotImproved = 0
|
90 |
+
else:
|
91 |
+
nNotImproved += 1
|
92 |
+
I_nz = I.repeat(nz, 1).t()
|
93 |
+
I_nineq = I.repeat(nineq, 1).t()
|
94 |
+
best['resids'][I] = resids[I]
|
95 |
+
best['x'][I_nz] = x[I_nz]
|
96 |
+
best['z'][I_nineq] = z[I_nineq]
|
97 |
+
best['s'][I_nineq] = s[I_nineq]
|
98 |
+
if neq > 0:
|
99 |
+
I_neq = I.repeat(neq, 1).t()
|
100 |
+
best['y'][I_neq] = y[I_neq]
|
101 |
+
if nNotImproved == notImprovedLim or reduce_stats(pri_resid) < eps or mu.min() > 1e32:
|
102 |
+
if best['resids'].max() > 1. and verbose >= 0:
|
103 |
+
print(INACC_ERR)
|
104 |
+
return best['x'], best['y'], best['z'], best['s']
|
105 |
+
|
106 |
+
if solver == KKTSolvers.LU_FULL:
|
107 |
+
D = bdiag(d)
|
108 |
+
dx_aff, ds_aff, dz_aff, dy_aff = factor_solve_kkt(
|
109 |
+
Q, D, G, A, rx, rs, rz, ry)
|
110 |
+
elif solver == KKTSolvers.LU_PARTIAL:
|
111 |
+
dx_aff, ds_aff, dz_aff, dy_aff = solve_kkt(
|
112 |
+
Q_LU, d, G, A, S_LU, rx, rs, rz, ry)
|
113 |
+
elif solver == KKTSolvers.IR_UNOPT:
|
114 |
+
D = bdiag(d)
|
115 |
+
dx_aff, ds_aff, dz_aff, dy_aff = solve_kkt_ir(
|
116 |
+
Q, D, G, A, rx, rs, rz, ry)
|
117 |
+
else:
|
118 |
+
assert False
|
119 |
+
|
120 |
+
# compute centering directions
|
121 |
+
alpha = torch.min(torch.min(get_step(z, dz_aff),
|
122 |
+
get_step(s, ds_aff)),
|
123 |
+
torch.ones(nBatch).type_as(Q))
|
124 |
+
alpha_nineq = alpha.repeat(nineq, 1).t()
|
125 |
+
t1 = s + alpha_nineq * ds_aff
|
126 |
+
t2 = z + alpha_nineq * dz_aff
|
127 |
+
t3 = torch.sum(t1 * t2, 1).squeeze()
|
128 |
+
t4 = torch.sum(s * z, 1).squeeze()
|
129 |
+
sig = (t3 / t4)**3
|
130 |
+
|
131 |
+
rx = torch.zeros(nBatch, nz).type_as(Q)
|
132 |
+
rs = ((-mu * sig).repeat(nineq, 1).t() + ds_aff * dz_aff) / s
|
133 |
+
rz = torch.zeros(nBatch, nineq).type_as(Q)
|
134 |
+
ry = torch.zeros(nBatch, neq).type_as(Q) if neq > 0 else torch.Tensor()
|
135 |
+
|
136 |
+
if solver == KKTSolvers.LU_FULL:
|
137 |
+
D = bdiag(d)
|
138 |
+
dx_cor, ds_cor, dz_cor, dy_cor = factor_solve_kkt(
|
139 |
+
Q, D, G, A, rx, rs, rz, ry)
|
140 |
+
elif solver == KKTSolvers.LU_PARTIAL:
|
141 |
+
dx_cor, ds_cor, dz_cor, dy_cor = solve_kkt(
|
142 |
+
Q_LU, d, G, A, S_LU, rx, rs, rz, ry)
|
143 |
+
elif solver == KKTSolvers.IR_UNOPT:
|
144 |
+
D = bdiag(d)
|
145 |
+
dx_cor, ds_cor, dz_cor, dy_cor = solve_kkt_ir(
|
146 |
+
Q, D, G, A, rx, rs, rz, ry)
|
147 |
+
else:
|
148 |
+
assert False
|
149 |
+
|
150 |
+
dx = dx_aff + dx_cor
|
151 |
+
ds = ds_aff + ds_cor
|
152 |
+
dz = dz_aff + dz_cor
|
153 |
+
dy = dy_aff + dy_cor if neq > 0 else None
|
154 |
+
alpha = torch.min(0.999 * torch.min(get_step(z, dz),
|
155 |
+
get_step(s, ds)),
|
156 |
+
torch.ones(nBatch).type_as(Q))
|
157 |
+
alpha_nineq = alpha.repeat(nineq, 1).t()
|
158 |
+
alpha_neq = alpha.repeat(neq, 1).t() if neq > 0 else None
|
159 |
+
alpha_nz = alpha.repeat(nz, 1).t()
|
160 |
+
|
161 |
+
x += alpha_nz * dx
|
162 |
+
s += alpha_nineq * ds
|
163 |
+
z += alpha_nineq * dz
|
164 |
+
y = y + alpha_neq * dy if neq > 0 else None
|
165 |
+
|
166 |
+
if best['resids'].max() > 1. and verbose >= 0:
|
167 |
+
print(INACC_ERR)
|
168 |
+
return best['x'], best['y'], best['z'], best['s']
|
169 |
+
|
170 |
+
pdipm_b.forward = forward
|
modelguidedattacks/losses/adversarial_distillation/ad_loss.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from .adversarial_distribution import AD_Distribution
|
4 |
+
|
5 |
+
class AdversarialDistillationLoss(nn.Module):
|
6 |
+
def __init__(self, confidence=0, alpha=10, beta=0.3):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.alpha = alpha
|
10 |
+
self.beta = beta
|
11 |
+
|
12 |
+
self.distri_generator = AD_Distribution(simi_name='glove',
|
13 |
+
alpha=self.alpha, beta=self.beta)
|
14 |
+
|
15 |
+
self.kl = nn.KLDivLoss(reduction='none')
|
16 |
+
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
17 |
+
|
18 |
+
def precompute(self, attack_targets, gt_labels, config):
|
19 |
+
device = attack_targets.device
|
20 |
+
|
21 |
+
target_distribution = self.distri_generator.generate_distribution(gt_labels.cpu(), attack_targets.cpu())
|
22 |
+
target_distribution = torch.from_numpy(target_distribution).float().to(device)
|
23 |
+
|
24 |
+
K = attack_targets.shape[-1]
|
25 |
+
target_distribution_topk = target_distribution.argsort(dim=-1, descending=True)[:, :K]
|
26 |
+
|
27 |
+
assert (target_distribution_topk == attack_targets).all()
|
28 |
+
|
29 |
+
return {
|
30 |
+
"ad_distribution": target_distribution
|
31 |
+
}
|
32 |
+
|
33 |
+
def forward(self, logits_pred, feats_pred, feats_pred_0, attack_targets, model, ad_distribution, **kwargs):
|
34 |
+
log_logits = self.logsoftmax(logits_pred)
|
35 |
+
loss_kl = self.kl(log_logits, ad_distribution)
|
36 |
+
loss_kl = torch.sum(loss_kl, dim = -1)
|
37 |
+
|
38 |
+
return loss_kl
|
modelguidedattacks/losses/adversarial_distillation/adversarial_distribution.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from .glove_simi import generate_glove, AD_DIRECTORY
|
4 |
+
|
5 |
+
class AD_Distribution():
|
6 |
+
def __init__(self, simi_name, alpha, beta):
|
7 |
+
print('using ........ ', simi_name, ' .... knowledge')
|
8 |
+
path_simi_name = os.path.join(AD_DIRECTORY, 'imagenet_cos_similarity')
|
9 |
+
file_simi_name = path_simi_name +'_'+ simi_name + '.npy'
|
10 |
+
if os.path.exists(file_simi_name):
|
11 |
+
self.cos_similarity = np.load(file_simi_name)
|
12 |
+
print(simi_name+" cos_similarity loaded")
|
13 |
+
else:
|
14 |
+
self.cos_similarity = self.generate_similarity(simi_name)
|
15 |
+
|
16 |
+
self.alpha = alpha
|
17 |
+
self.beta = beta
|
18 |
+
|
19 |
+
def generate_similarity(self,simi_name):
|
20 |
+
if simi_name == 'glove':
|
21 |
+
similarity = generate_glove()
|
22 |
+
else:
|
23 |
+
print(simi_name + 'not implemented yet')
|
24 |
+
return similarity
|
25 |
+
|
26 |
+
def generate_distribution(self, gt_label, target):
|
27 |
+
distribution=[]
|
28 |
+
|
29 |
+
for i in range(len(target)):
|
30 |
+
distri = self.single_distribution_build(i, target[i], gt_label[i])
|
31 |
+
distribution.append(distri)
|
32 |
+
|
33 |
+
distribution = np.array(distribution)
|
34 |
+
return distribution
|
35 |
+
|
36 |
+
def single_distribution_build(self,index, target_id, gt_id):
|
37 |
+
if target_id.shape == ():
|
38 |
+
target_id = np.array([target_id])
|
39 |
+
|
40 |
+
simil_logits = np.zeros(self.cos_similarity[target_id[0],:].shape)
|
41 |
+
for i in range(len(target_id)):
|
42 |
+
simil_logits += self.cos_similarity[target_id[i],:]
|
43 |
+
|
44 |
+
simil_logits = (simil_logits)/ len(target_id)
|
45 |
+
logit_value = self.alpha
|
46 |
+
|
47 |
+
for i in range(len(target_id)):
|
48 |
+
simil_logits[target_id[i]] = logit_value
|
49 |
+
logit_value = logit_value - self.beta
|
50 |
+
|
51 |
+
if not self.check_oreder_target_no_groundtruth(simil_logits, target_id):
|
52 |
+
print('fail to generate distribution for index: ', index)
|
53 |
+
|
54 |
+
logits = self.softmax(simil_logits)
|
55 |
+
return logits
|
56 |
+
|
57 |
+
def check_oreder_target_no_groundtruth(self, probs, target_id):
|
58 |
+
sort_labels = np.argsort(probs)
|
59 |
+
cnt = 0
|
60 |
+
for i in range(len(target_id)):
|
61 |
+
if target_id[-(i+1)] == sort_labels[-(len(target_id)-i)]:
|
62 |
+
cnt +=1
|
63 |
+
if (cnt == len(target_id)):
|
64 |
+
return True
|
65 |
+
else:
|
66 |
+
return False
|
67 |
+
|
68 |
+
def softmax(self,logits):
|
69 |
+
|
70 |
+
prob=np.exp(logits) / np.sum(np.exp(logits))
|
71 |
+
return prob
|
72 |
+
|
modelguidedattacks/losses/adversarial_distillation/glove.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
class GloVe():
|
5 |
+
|
6 |
+
def __init__(self, file_path):
|
7 |
+
self.dimension = None
|
8 |
+
self.embedding = dict()
|
9 |
+
with open(file_path, 'r') as f:
|
10 |
+
for line in tqdm(f.readlines()):
|
11 |
+
strs = line.strip().split(' ')
|
12 |
+
word = strs[0]
|
13 |
+
vector = torch.FloatTensor(list(map(float, strs[1:])))
|
14 |
+
self.embedding[word] = vector
|
15 |
+
if self.dimension is None:
|
16 |
+
self.dimension = len(vector)
|
17 |
+
|
18 |
+
def _fix_word(self, word):
|
19 |
+
terms = word.replace('_', ' ').split(' ')
|
20 |
+
ret = self.zeros()
|
21 |
+
cnt = 0
|
22 |
+
for term in terms:
|
23 |
+
v = self.embedding.get(term)
|
24 |
+
if v is None:
|
25 |
+
subterms = term.split('-')
|
26 |
+
subterm_sum = self.zeros()
|
27 |
+
subterm_cnt = 0
|
28 |
+
for subterm in subterms:
|
29 |
+
subv = self.embedding.get(subterm)
|
30 |
+
if subv is not None:
|
31 |
+
subterm_sum += subv
|
32 |
+
subterm_cnt += 1
|
33 |
+
if subterm_cnt > 0:
|
34 |
+
v = subterm_sum / subterm_cnt
|
35 |
+
if v is not None:
|
36 |
+
ret += v
|
37 |
+
cnt += 1
|
38 |
+
return ret / cnt if cnt > 0 else None
|
39 |
+
|
40 |
+
def __getitem__(self, words):
|
41 |
+
if type(words) is str:
|
42 |
+
words = [words]
|
43 |
+
ret = self.zeros()
|
44 |
+
cnt = 0
|
45 |
+
for word in words:
|
46 |
+
v = self.embedding.get(word)
|
47 |
+
if v is None:
|
48 |
+
v = self._fix_word(word)
|
49 |
+
if v is not None:
|
50 |
+
ret += v
|
51 |
+
cnt += 1
|
52 |
+
if cnt > 0:
|
53 |
+
return ret / cnt
|
54 |
+
else:
|
55 |
+
return self.zeros()
|
56 |
+
|
57 |
+
def zeros(self):
|
58 |
+
return torch.zeros(self.dimension)
|
modelguidedattacks/losses/adversarial_distillation/glove_simi.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import requests
|
4 |
+
import zipfile
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import optim
|
10 |
+
from torch.autograd import Variable
|
11 |
+
from torchvision import datasets, transforms
|
12 |
+
import torchvision
|
13 |
+
from PIL import Image
|
14 |
+
from .glove import GloVe
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
AD_DIRECTORY = os.path.dirname(__file__)
|
18 |
+
|
19 |
+
def obtain_vector(inputs, glove):
|
20 |
+
vector_im = glove.embedding.get(inputs)
|
21 |
+
if vector_im is None:
|
22 |
+
vector_im = glove.embedding.get(inputs.lower())
|
23 |
+
if vector_im is None:
|
24 |
+
vector_im = glove.embedding.get(inputs.title())
|
25 |
+
if vector_im is None:
|
26 |
+
vector_im = glove.embedding.get(inputs.upper())
|
27 |
+
return vector_im
|
28 |
+
|
29 |
+
def generate_glove():
|
30 |
+
print("Generating glove similarity...")
|
31 |
+
#download glove file
|
32 |
+
os.makedirs("./knowledge", exist_ok=True)
|
33 |
+
glove_file = './knowledge/glove.840B.300d.txt'
|
34 |
+
if not os.path.exists(glove_file):
|
35 |
+
print("Downloading glove files...")
|
36 |
+
print("")
|
37 |
+
print("Gonna take a while")
|
38 |
+
print("")
|
39 |
+
url_path = "http://nlp.stanford.edu/data/glove.840B.300d.zip"
|
40 |
+
r = requests.get(url_path)
|
41 |
+
with open("./knowledge/glove.840B.300d.zip","wb") as f:
|
42 |
+
f.write(r.content)
|
43 |
+
filename = './knowledge/glove.840B.300d.zip'
|
44 |
+
fz = zipfile.ZipFile(filename, 'r')
|
45 |
+
for file in fz.namelist():
|
46 |
+
fz.extract(file, './knowledge/.')
|
47 |
+
if os.path.exists(filename):
|
48 |
+
os.remove(filename)
|
49 |
+
|
50 |
+
glove = GloVe('./knowledge/glove.840B.300d.txt')
|
51 |
+
filepath = os.path.join(AD_DIRECTORY, "label_name.txt")
|
52 |
+
vec_list = []
|
53 |
+
vec_list_np = []
|
54 |
+
cos_similarity = np.zeros((1000,1000))
|
55 |
+
|
56 |
+
index = 0
|
57 |
+
|
58 |
+
#the labels could be a word or a phrase with multi words
|
59 |
+
#we also tested on average of every words
|
60 |
+
#But we assume the last word should be more important, so in our final version
|
61 |
+
#we assign a higher weight to last word in a phrase and average the fornt words
|
62 |
+
|
63 |
+
#w2v for last word of multi-words
|
64 |
+
for line in tqdm(open(filepath)):
|
65 |
+
a = line.strip('\n')
|
66 |
+
|
67 |
+
b = a.split(',')
|
68 |
+
cnt = 0
|
69 |
+
vector = torch.zeros(300)
|
70 |
+
vec_front = torch.zeros(300)
|
71 |
+
vec_b_average = torch.zeros(300)
|
72 |
+
cnt_b = 0
|
73 |
+
for i in range(len(b)):
|
74 |
+
b[i] = b[i].lstrip()
|
75 |
+
c = b[i].split(' ')
|
76 |
+
if obtain_vector(c[-1], glove) is not None:
|
77 |
+
vec_b_average += obtain_vector(c[-1], glove)
|
78 |
+
cnt_b += 1
|
79 |
+
if cnt_b == 0:
|
80 |
+
print('index ', index,' generatint word_vector failure')
|
81 |
+
continue
|
82 |
+
vec_b_average = vec_b_average / cnt_b
|
83 |
+
|
84 |
+
for i in range(len(b)):
|
85 |
+
b[i] = b[i].lstrip()
|
86 |
+
c = b[i].split(' ')
|
87 |
+
cnt_f = 0
|
88 |
+
for j in range(len(c) - 1):
|
89 |
+
if obtain_vector(c[j], glove) is not None:
|
90 |
+
vec_front += obtain_vector(c[j], glove)
|
91 |
+
cnt_f += 1
|
92 |
+
if obtain_vector(c[-1], glove) is not None:
|
93 |
+
vec_back =obtain_vector(c[-1], glove)
|
94 |
+
else:
|
95 |
+
vec_back = vec_b_average
|
96 |
+
if cnt_f == 0:
|
97 |
+
vector += vec_back
|
98 |
+
else:
|
99 |
+
vector += (vec_front / cnt_f )* 0.1 + vec_back * 0.9
|
100 |
+
cnt += 1
|
101 |
+
|
102 |
+
vector = torch.div(vector,cnt)
|
103 |
+
|
104 |
+
vec_list_np.append(np.array(vector))
|
105 |
+
vec_list.append(vector)
|
106 |
+
index += 1
|
107 |
+
|
108 |
+
|
109 |
+
vec_list_np_stacked = np.stack(vec_list_np)
|
110 |
+
vec_list_torch = torch.from_numpy(vec_list_np_stacked)
|
111 |
+
|
112 |
+
cos_similarity = F.cosine_similarity(vec_list_torch[None, :], vec_list_torch[:, None], dim=-1)
|
113 |
+
cos_similarity = cos_similarity.numpy()
|
114 |
+
|
115 |
+
# np.save('./knowledge/golve_vec_list', np.array(vec_list_np))
|
116 |
+
# for i in range(len(vec_list)):
|
117 |
+
# for j in range(len(vec_list)):
|
118 |
+
# cos_similarity[i,j] = F.cosine_similarity(vec_list[i], vec_list[j],dim=0).type(torch.half)
|
119 |
+
# if i != j:
|
120 |
+
# cos_similarity[i,j] = cos_similarity[i,j]
|
121 |
+
# cos_similarity = np.array(cos_similarity)
|
122 |
+
|
123 |
+
|
124 |
+
np.save(os.path.join(AD_DIRECTORY, "imagenet_cos_similarity_glove"), cos_similarity)
|
125 |
+
print("Glove cos_similarity finished")
|
126 |
+
return cos_similarity
|
modelguidedattacks/losses/boilerplate.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
def generalized_mean(x, p, dim):
|
5 |
+
x_type = x.dtype
|
6 |
+
x = x.to(torch.double)
|
7 |
+
x = x**p
|
8 |
+
x = x.mean(dim=dim)
|
9 |
+
x = x**(1/p)
|
10 |
+
return x.to(x_type)
|
11 |
+
|
12 |
+
def surject_to_positive(x, c=5):
|
13 |
+
assert x.min() >= -1
|
14 |
+
assert x.max() <= 1
|
15 |
+
|
16 |
+
return c + c * x
|
17 |
+
|
18 |
+
def surject_from_positive(x, c=5):
|
19 |
+
return (x - c) / c
|
20 |
+
|
21 |
+
class BoilerplateLoss(nn.Module):
|
22 |
+
def __init__(self) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.p = 9
|
25 |
+
|
26 |
+
def forward(self, y_pred, y_attack, **kwargs):
|
27 |
+
y_pred = y_pred.softmax(dim=-1)
|
28 |
+
|
29 |
+
C = y_pred.shape[1]
|
30 |
+
K = y_attack.shape[1]
|
31 |
+
desired_mask = torch.zeros_like(y_pred, dtype=torch.bool)
|
32 |
+
desired_mask.scatter_(dim=1, index=y_attack,
|
33 |
+
src=torch.ones_like(y_attack, dtype=torch.bool))
|
34 |
+
|
35 |
+
y_not_in_attack = (~desired_mask).nonzero()[:, 1].view(-1, C - K)
|
36 |
+
|
37 |
+
y_pred_in_attack = torch.gather(y_pred, dim=1, index=y_attack)
|
38 |
+
y_pred_not_in_attack = torch.gather(y_pred, dim=1, index=y_not_in_attack)
|
39 |
+
|
40 |
+
y_pred_in_attack_min = y_pred_in_attack.min(dim=-1).values #generalized_mean(y_pred_in_attack, -self.p, dim=1)
|
41 |
+
y_pred_not_in_attack_max = y_pred_not_in_attack.max(dim=-1).values #generalized_mean(y_pred_not_in_attack, self.p, dim=1)
|
42 |
+
|
43 |
+
macro_loss = (y_pred_not_in_attack_max - y_pred_in_attack_min)
|
44 |
+
sorting_loss = y_pred_in_attack.diff(dim=-1)
|
45 |
+
|
46 |
+
# Surject sorting_loss to positive domain, since it goes [-1,1] we can just shift by 1
|
47 |
+
sorting_loss = surject_to_positive(sorting_loss)
|
48 |
+
sorting_loss = generalized_mean(sorting_loss, p=9, dim=-1)
|
49 |
+
|
50 |
+
# Surject back
|
51 |
+
sorting_loss = surject_from_positive(sorting_loss)
|
52 |
+
|
53 |
+
catted_loss = torch.stack([macro_loss, sorting_loss], dim=-1)
|
54 |
+
catted_loss_pos = surject_to_positive(catted_loss)
|
55 |
+
|
56 |
+
final_loss_pos = generalized_mean(catted_loss_pos, p=10, dim=-1)
|
57 |
+
final_loss = surject_from_positive(final_loss_pos)
|
58 |
+
|
59 |
+
return final_loss
|
modelguidedattacks/losses/cvx_proj.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import cvxpy as cp
|
5 |
+
import qpth
|
6 |
+
from . import _qp_solver_patch
|
7 |
+
|
8 |
+
def solve_qp(Q, P, G, H):
|
9 |
+
B = Q.shape[0]
|
10 |
+
|
11 |
+
if B == 1:
|
12 |
+
# Batch size of 1 has weird instabilities
|
13 |
+
# I imagine there is a .squeeze() or something inside the QP solver's code
|
14 |
+
# that messes up broadcasting dimensions when batch dimension is 1 so let's
|
15 |
+
# artificially make 2 solutions when we need 1
|
16 |
+
|
17 |
+
Q = Q.expand(2, -1, -1)
|
18 |
+
P = P.expand(2, -1)
|
19 |
+
G = G.expand(2, -1, -1)
|
20 |
+
H = H.expand(2, -1)
|
21 |
+
|
22 |
+
e = torch.empty(0, device=Q.device)
|
23 |
+
z_sol = qpth.qp.QPFunction(verbose=-1, eps=1e-2, check_Q_spd=False)(Q, P, G, H, e, e)
|
24 |
+
|
25 |
+
if B == 1:
|
26 |
+
z_sol = z_sol[:1]
|
27 |
+
|
28 |
+
return z_sol
|
29 |
+
|
30 |
+
class CVXProjLoss(nn.Module):
|
31 |
+
def __init__(self, confidence=0):
|
32 |
+
super().__init__()
|
33 |
+
self.confidence = confidence
|
34 |
+
|
35 |
+
def precompute(self, attack_targets, gt_labels, config):
|
36 |
+
return {
|
37 |
+
"margin": config.cvx_proj_margin
|
38 |
+
}
|
39 |
+
|
40 |
+
def forward(self, logits_pred, feats_pred, feats_pred_0, attack_targets, model, margin, **kwargs):
|
41 |
+
device = logits_pred.device
|
42 |
+
head_W, head_bias = model.head_matrices()
|
43 |
+
|
44 |
+
num_feats = head_W.shape[1]
|
45 |
+
num_classes = head_W.shape[0]
|
46 |
+
|
47 |
+
K = attack_targets.shape[-1]
|
48 |
+
B = logits_pred.shape[0]
|
49 |
+
|
50 |
+
# Start with all classes should be less than smallest attack target
|
51 |
+
D = -torch.eye(num_classes, device=device)[None].repeat(B, 1, 1) # [B, C, C]
|
52 |
+
attack_targets_write = attack_targets[:, -1][:, None, None].expand(-1, D.shape[1], -1)
|
53 |
+
D.scatter_(dim=2, index=attack_targets_write, src=torch.ones(attack_targets_write.shape, device=device))
|
54 |
+
|
55 |
+
# Clear out the constraint row for each item in the attack targets
|
56 |
+
attack_targets_clear = attack_targets[:, :, None].expand(-1, -1, D.shape[-1])
|
57 |
+
D.scatter_(dim=1, index=attack_targets_clear, src=torch.zeros(attack_targets_clear.shape, device=device))
|
58 |
+
|
59 |
+
batch_inds = torch.arange(B, device=device)[:, None].expand(-1, K - 1)
|
60 |
+
attack_targets_pos = attack_targets[:, :-1] # [B, K-1]
|
61 |
+
attack_targets_neg = attack_targets[:, 1:] # [B, K-1]
|
62 |
+
|
63 |
+
attack_targets_neg_inds = torch.stack((
|
64 |
+
batch_inds,
|
65 |
+
attack_targets_neg,
|
66 |
+
attack_targets_neg
|
67 |
+
), dim=0) # [3, B, K - 1]
|
68 |
+
attack_targets_neg_inds = attack_targets_neg_inds.view(3, -1)
|
69 |
+
|
70 |
+
D[attack_targets_neg_inds[0], attack_targets_neg_inds[1], attack_targets_neg_inds[2]] = -1
|
71 |
+
|
72 |
+
attack_targets_pos_inds = torch.stack((
|
73 |
+
batch_inds,
|
74 |
+
attack_targets_neg,
|
75 |
+
attack_targets_pos
|
76 |
+
), dim=0) # [3, B, K - 1]
|
77 |
+
|
78 |
+
D[attack_targets_pos_inds[0], attack_targets_pos_inds[1], attack_targets_pos_inds[2]] = 1
|
79 |
+
|
80 |
+
A = head_W
|
81 |
+
b = head_bias
|
82 |
+
|
83 |
+
Q = 2*torch.eye(feats_pred.shape[1], device=device)[None].expand(B, -1, -1)
|
84 |
+
|
85 |
+
# We want the solution features to be as close as possible
|
86 |
+
# to the current features but also head on the direction of
|
87 |
+
# the smallest possible perturbation from the initial predicted
|
88 |
+
# features
|
89 |
+
anchor_feats = feats_pred
|
90 |
+
|
91 |
+
P = -2*anchor_feats.expand(B, -1)
|
92 |
+
|
93 |
+
G = -D@A
|
94 |
+
H = -(margin - D @ b)
|
95 |
+
|
96 |
+
# Constraints are indexed by smaller logit
|
97 |
+
# First attack target isn't smaller than any logit, so its
|
98 |
+
# constraint index is redundant, but we keep it for easier parallelization
|
99 |
+
# Make this constraint all 0s
|
100 |
+
zero_inds = attack_targets[:, 0:1] # [B, 1]
|
101 |
+
H.scatter_(dim=1, index=zero_inds, src=torch.zeros(zero_inds.shape, device=device))
|
102 |
+
|
103 |
+
z_sol = solve_qp(Q, P, G, H)
|
104 |
+
|
105 |
+
loss = (feats_pred - z_sol).square().sum(dim=-1)
|
106 |
+
|
107 |
+
# loss_check = self.forward_check(logits_pred, feats_pred, attack_targets, model, **kwargs)
|
108 |
+
return loss
|
modelguidedattacks/losses/cw_extension.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
CARLINI_COEFF_UPPER = 1e10
|
5 |
+
|
6 |
+
class CWExtensionLoss(nn.Module):
|
7 |
+
def __init__(self, confidence=0):
|
8 |
+
super().__init__()
|
9 |
+
self.confidence = confidence
|
10 |
+
|
11 |
+
def precompute(self, *args, **kwargs):
|
12 |
+
return {}
|
13 |
+
|
14 |
+
def forward(self, logits_pred, attack_targets, **kwargs):
|
15 |
+
#orign cw attack loss
|
16 |
+
if attack_targets.dim() == 1:
|
17 |
+
mask_logits = F.one_hot(attack_targets, logits_pred.shape[1]).float()
|
18 |
+
|
19 |
+
real = (mask_logits * logits_pred).sum(dim=1)
|
20 |
+
other = ((1.0 - mask_logits) * logits_pred - (mask_logits * 10000.0)
|
21 |
+
).max(1)[0]
|
22 |
+
loss_cw = torch.clamp(other - real + self.confidence, min=0.)
|
23 |
+
return loss_cw
|
24 |
+
|
25 |
+
#extended cw loss for topk attack tasks
|
26 |
+
else:
|
27 |
+
mask_logits = torch.zeros([logits_pred.shape[0], logits_pred.shape[1]], device=logits_pred.device)
|
28 |
+
min_values = torch.ones(attack_targets.shape[0], dtype=torch.float, device=logits_pred.device) * 1e10
|
29 |
+
loss_cw_topk = 0
|
30 |
+
|
31 |
+
for i in range(attack_targets.shape[1]):
|
32 |
+
other = ((1.0 - mask_logits) * logits_pred - (mask_logits * 10000.0)
|
33 |
+
).max(1)[0]
|
34 |
+
|
35 |
+
|
36 |
+
loss_cw_topk += torch.clamp(other - min_values + self.confidence, min=0.)
|
37 |
+
mask_logits[torch.arange(len(attack_targets)), attack_targets[:,i]] = 1
|
38 |
+
min_values = torch.min(logits_pred[torch.arange(len(attack_targets)), attack_targets[:,i]], min_values)
|
39 |
+
|
40 |
+
real = min_values
|
41 |
+
other = ((1.0 - mask_logits) * logits_pred - (mask_logits * 10000.0)
|
42 |
+
).max(1)[0]
|
43 |
+
loss_cw_topk += torch.clamp(other - real + self.confidence, min=0.)
|
44 |
+
constant = attack_targets.shape[1]
|
45 |
+
|
46 |
+
return (loss_cw_topk / constant)
|
modelguidedattacks/losses/energy.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from ignite.metrics import Loss
|
4 |
+
from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce
|
5 |
+
from typing import Callable, cast, Dict, Sequence, Tuple, Union
|
6 |
+
|
7 |
+
def get_correct_mask(y_pred, y_attack):
|
8 |
+
k = y_attack.shape[-1]
|
9 |
+
|
10 |
+
y_pred_indices = y_pred.argsort(dim=-1, descending=True) # [N, C]
|
11 |
+
|
12 |
+
correct = (y_pred_indices[:, :k] == y_attack).all(dim=-1)
|
13 |
+
return correct
|
14 |
+
|
15 |
+
class EnergyLoss(Loss):
|
16 |
+
def __init__(self, loss_fn, reduction="mean", device = ...):
|
17 |
+
super().__init__(loss_fn, device=device)
|
18 |
+
self.reduction = reduction
|
19 |
+
|
20 |
+
@reinit__is_reduced
|
21 |
+
def reset(self) -> None:
|
22 |
+
self._sum = torch.tensor(0.0, device=self._device)
|
23 |
+
self._min = torch.tensor(torch.inf, device=self._device)
|
24 |
+
self._max = torch.tensor(0.0, device=self._device)
|
25 |
+
self._num_examples = 0
|
26 |
+
|
27 |
+
@reinit__is_reduced
|
28 |
+
def update(self, output: Sequence[Union[torch.Tensor, Dict]]) -> None:
|
29 |
+
if len(output) == 2:
|
30 |
+
y_pred, y = cast(Tuple[torch.Tensor, torch.Tensor], output)
|
31 |
+
kwargs: Dict = {}
|
32 |
+
else:
|
33 |
+
y_pred, y, kwargs = cast(Tuple[torch.Tensor, torch.Tensor, Dict], output)
|
34 |
+
|
35 |
+
sample_energies = self._loss_fn(y_pred, y, **kwargs).detach()
|
36 |
+
|
37 |
+
n = len(sample_energies)
|
38 |
+
|
39 |
+
if n > 0:
|
40 |
+
self._sum += sample_energies.sum()
|
41 |
+
self._min = torch.minimum(self._min, sample_energies.min())
|
42 |
+
self._max = torch.maximum(self._max, sample_energies.max())
|
43 |
+
self._num_examples += n
|
44 |
+
|
45 |
+
@sync_all_reduce("_sum", "_num_examples", "_min:MIN", "_max:MAX")
|
46 |
+
def compute(self) -> float:
|
47 |
+
|
48 |
+
if self.reduction == "mean":
|
49 |
+
if self._num_examples == 0:
|
50 |
+
return torch.inf
|
51 |
+
|
52 |
+
return self._sum.item() / self._num_examples
|
53 |
+
elif self.reduction == "max":
|
54 |
+
if self._num_examples == 0:
|
55 |
+
return torch.nan
|
56 |
+
|
57 |
+
return self._max.item()
|
58 |
+
elif self.reduction == "min":
|
59 |
+
if self._num_examples == 0:
|
60 |
+
return torch.inf
|
61 |
+
|
62 |
+
return self._min.item()
|
63 |
+
else:
|
64 |
+
assert False
|
65 |
+
|
66 |
+
class Energy(nn.Module):
|
67 |
+
def __init__(self, p="2") -> None:
|
68 |
+
super().__init__()
|
69 |
+
self.p = p
|
70 |
+
|
71 |
+
def forward(self, y_pred, y_attack, perturbations, **kwargs):
|
72 |
+
correct = get_correct_mask(y_pred, y_attack)
|
73 |
+
|
74 |
+
# Don't want to take into account perturbations of
|
75 |
+
# unsuccessful attacks
|
76 |
+
|
77 |
+
perturbations = perturbations[correct]
|
78 |
+
perturbations = perturbations.flatten(1)
|
79 |
+
|
80 |
+
return torch.linalg.vector_norm(perturbations, dim=-1, ord=self.p)
|
modelguidedattacks/metrics/topk_accuracy.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ignite.metrics import Accuracy, Loss
|
3 |
+
from typing import Sequence
|
4 |
+
|
5 |
+
class TopKAccuracy(Accuracy):
|
6 |
+
def update(self, output: Sequence[torch.Tensor], **kwargs) -> None:
|
7 |
+
y_pred, y_attack = output[0].detach(), output[1].detach()
|
8 |
+
k = y_attack.shape[-1]
|
9 |
+
|
10 |
+
y_pred_indices = y_pred.argsort(dim=-1, descending=True) # [N, C]
|
11 |
+
|
12 |
+
correct = (y_pred_indices[:, :k] == y_attack).all(dim=-1)
|
13 |
+
|
14 |
+
self._num_correct += torch.sum(correct).to(self._device)
|
15 |
+
self._num_examples += correct.shape[0]
|
modelguidedattacks/models.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision import models
|
2 |
+
|
3 |
+
from modelguidedattacks.guides.instance_guide import InstanceGuide
|
4 |
+
from modelguidedattacks.guides.unguided import Unguided
|
5 |
+
from modelguidedattacks import losses
|
6 |
+
|
7 |
+
from .cls_models.registry import get_model
|
8 |
+
|
9 |
+
guide_model_registry = {
|
10 |
+
"instance_guided": InstanceGuide,
|
11 |
+
"unguided": Unguided
|
12 |
+
}
|
13 |
+
|
14 |
+
loss_registry = {
|
15 |
+
"cvxproj": losses.CVXProjLoss,
|
16 |
+
"cwk": losses.CWExtensionLoss,
|
17 |
+
"ad": losses.AdversarialDistillationLoss
|
18 |
+
}
|
19 |
+
|
20 |
+
def setup_model(config, device):
|
21 |
+
model = get_model(config.dataset, config.model, device)
|
22 |
+
|
23 |
+
kwargs = {}
|
24 |
+
|
25 |
+
if config.guide_model == "unguided":
|
26 |
+
kwargs["iterations"] = config.unguided_iterations
|
27 |
+
kwargs["lr"] = config.unguided_lr
|
28 |
+
kwargs["loss_fn"] = loss_registry[config.loss]
|
29 |
+
kwargs["binary_search_steps"] = config.binary_search_steps
|
30 |
+
kwargs["topk_loss_coef_upper"] = config.topk_loss_coef_upper
|
31 |
+
|
32 |
+
return guide_model_registry[config.guide_model](model, config, **kwargs)
|
modelguidedattacks/results.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from pathlib import Path
|
4 |
+
import numpy as np
|
5 |
+
import copy
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
config_parameter_keys = ["loss", "unguided_lr", "model", "k", "binary_search_steps",
|
9 |
+
"unguided_iterations", "topk_loss_coef_upper", "seed",
|
10 |
+
"opt_warmup_its", "cvx_proj_margin",
|
11 |
+
"topk_loss_coef_upper", "binary_search_steps"]
|
12 |
+
|
13 |
+
def config_to_dict(config):
|
14 |
+
result_keys = config_parameter_keys
|
15 |
+
|
16 |
+
result_dict = {
|
17 |
+
key: getattr(config, key) for key in result_keys
|
18 |
+
}
|
19 |
+
|
20 |
+
if hasattr(config, "cvx_proj_margin"):
|
21 |
+
result_dict["cvx_proj_margin"] = config.cvx_proj_margin
|
22 |
+
else:
|
23 |
+
result_dict["cvx_proj_margin"] = 0.2
|
24 |
+
|
25 |
+
return result_dict
|
26 |
+
|
27 |
+
def load_all_results(load_min_max=False):
|
28 |
+
if not os.path.isdir("results_rebuttal"):
|
29 |
+
return []
|
30 |
+
|
31 |
+
all_result_files = Path('results_rebuttal').rglob('*.save')
|
32 |
+
|
33 |
+
results_list = []
|
34 |
+
for result_file in all_result_files:
|
35 |
+
result = torch.load(result_file)
|
36 |
+
config = result["config"]
|
37 |
+
|
38 |
+
result_dict = config_to_dict(config)
|
39 |
+
|
40 |
+
result_dict["ASR"] = result["ASR"]
|
41 |
+
result_dict["L1"] = result["L1 Energy"]
|
42 |
+
result_dict["L2"] = result["L2 Energy"]
|
43 |
+
result_dict["L_inf"] = result["L_inf Energy"]
|
44 |
+
|
45 |
+
if "L2 Energy Max" in result and load_min_max:
|
46 |
+
result_dict["L1 Max"] = result["L1 Energy Max"]
|
47 |
+
result_dict["L2 Max"] = result["L2 Energy Max"]
|
48 |
+
result_dict["L_inf Max"] = result["L_inf Energy Max"]
|
49 |
+
|
50 |
+
result_dict["L1 Min"] = result["L1 Energy Min"]
|
51 |
+
result_dict["L2 Min"] = result["L2 Energy Min"]
|
52 |
+
result_dict["L_inf Min"] = result["L_inf Energy Min"]
|
53 |
+
|
54 |
+
results_list.append(result_dict)
|
55 |
+
|
56 |
+
return results_list
|
57 |
+
|
58 |
+
def close(target, eps=1e-5):
|
59 |
+
return lambda x: np.allclose(x, target, atol=eps)
|
60 |
+
|
61 |
+
def eq(target):
|
62 |
+
if isinstance(target, float):
|
63 |
+
return close(target)
|
64 |
+
else:
|
65 |
+
return lambda x: x == target
|
66 |
+
|
67 |
+
def gte(target):
|
68 |
+
return lambda x: float(x) >= target
|
69 |
+
|
70 |
+
def lte(target):
|
71 |
+
return lambda x: float(x) <= target
|
72 |
+
|
73 |
+
def in_set(target):
|
74 |
+
return lambda x: x in target
|
75 |
+
|
76 |
+
def filter_from_config(config):
|
77 |
+
config_dict = config_to_dict(config)
|
78 |
+
|
79 |
+
filter = {
|
80 |
+
key: eq(val) for (key, val) in config_dict.items()
|
81 |
+
}
|
82 |
+
|
83 |
+
return filter
|
84 |
+
|
85 |
+
def filter_results(filter, results_list, only_with_minmax=False):
|
86 |
+
filtered_results = []
|
87 |
+
for result in results_list:
|
88 |
+
pass_filter = True
|
89 |
+
for key, val in result.items():
|
90 |
+
if key not in filter:
|
91 |
+
continue
|
92 |
+
|
93 |
+
if not filter[key](val):
|
94 |
+
pass_filter = False
|
95 |
+
break
|
96 |
+
|
97 |
+
if only_with_minmax and "L2 Max" not in result:
|
98 |
+
continue
|
99 |
+
|
100 |
+
if pass_filter:
|
101 |
+
filtered_results.append(result)
|
102 |
+
|
103 |
+
return filtered_results
|
104 |
+
|
105 |
+
def resolve_nonunique_filter(filter, results_list, include_failed=False):
|
106 |
+
filtered_results = filter_results(filter, results_list)
|
107 |
+
|
108 |
+
unique_parameters = []
|
109 |
+
# Find unique parameter sets for results
|
110 |
+
for result in filtered_results:
|
111 |
+
result_parameters = {param_key:result[param_key] for param_key in config_parameter_keys}
|
112 |
+
|
113 |
+
# Round to avoid floating pt imprecision from messing with set uniqueness checks
|
114 |
+
for key in result_parameters.keys():
|
115 |
+
if isinstance(result_parameters[key], float):
|
116 |
+
result_parameters[key] = round(result_parameters[key], 5)
|
117 |
+
|
118 |
+
del result_parameters["seed"]
|
119 |
+
unique_parameters.append(result_parameters)
|
120 |
+
|
121 |
+
# Only keep unique dicts
|
122 |
+
unique_parameters = [dict(y) for y in set(tuple(x.items()) for x in unique_parameters)]
|
123 |
+
|
124 |
+
best_metric = -np.Infinity
|
125 |
+
best_param_set = None
|
126 |
+
best_result_list = None
|
127 |
+
for param_set in unique_parameters:
|
128 |
+
# Perform another search
|
129 |
+
unique_filter = {
|
130 |
+
param_name: eq(param_value) for param_name, param_value in param_set.items()
|
131 |
+
}
|
132 |
+
|
133 |
+
filtered_results = filter_results(unique_filter, results_list)
|
134 |
+
|
135 |
+
assert len(filtered_results) == 5
|
136 |
+
|
137 |
+
asrs = [result["ASR"] for result in filtered_results]
|
138 |
+
l2_energies = [result["L2"] for result in filtered_results]
|
139 |
+
|
140 |
+
mean_asr = np.mean(np.array(asrs)[np.isfinite(asrs)])
|
141 |
+
mean_l2 = np.mean(np.array(l2_energies)[np.isfinite(l2_energies)])
|
142 |
+
|
143 |
+
# Arbitrary point in tradeoff curve
|
144 |
+
result_goodness = -mean_l2 + mean_asr * 100
|
145 |
+
|
146 |
+
if (mean_asr > 0 and mean_asr < 0.025) and not include_failed:
|
147 |
+
# Irrelevant result and associated energies
|
148 |
+
continue
|
149 |
+
|
150 |
+
if result_goodness > best_metric or (include_failed and best_param_set is None):
|
151 |
+
best_param_set = param_set
|
152 |
+
best_result_list = filtered_results
|
153 |
+
best_metric = result_goodness
|
154 |
+
|
155 |
+
return best_param_set, best_result_list
|
156 |
+
|
157 |
+
def get_combined_results(filtered_results):
|
158 |
+
combined_results = {}
|
159 |
+
|
160 |
+
for result in filtered_results:
|
161 |
+
for key in result:
|
162 |
+
if key not in combined_results:
|
163 |
+
combined_results[key] = []
|
164 |
+
|
165 |
+
combined_results[key].append(result[key])
|
166 |
+
|
167 |
+
unique_runs = len(np.unique(combined_results["seed"]))
|
168 |
+
# assert len(combined_results["seed"]) == unique_runs
|
169 |
+
|
170 |
+
for key, val in list(combined_results.items()):
|
171 |
+
if key in ["ASR", "L1", "L2", "L_inf"]:
|
172 |
+
val = np.array(val)
|
173 |
+
combined_results[f"{key}_mean"] = np.mean(val[np.isfinite(val)])
|
174 |
+
combined_results[f"{key}_median"] = np.median(val[np.isfinite(val)])
|
175 |
+
|
176 |
+
# Coupled results
|
177 |
+
best_asr_idx = np.argmax(combined_results["ASR"])
|
178 |
+
best_asr = combined_results["ASR"][best_asr_idx]
|
179 |
+
best_l1 = combined_results["L1"][best_asr_idx]
|
180 |
+
best_l2 = combined_results["L2"][best_asr_idx]
|
181 |
+
best_linf = combined_results["L_inf"][best_asr_idx]
|
182 |
+
|
183 |
+
combined_results["ASR_best"] = best_asr
|
184 |
+
combined_results["L1_best"] = best_l1
|
185 |
+
combined_results["L2_best"] = best_l2
|
186 |
+
combined_results["L_inf_best"] = best_linf
|
187 |
+
|
188 |
+
worst_asr_idx = np.argmin(combined_results["ASR"])
|
189 |
+
worst_asr = combined_results["ASR"][worst_asr_idx]
|
190 |
+
worst_l1 = combined_results["L1"][worst_asr_idx]
|
191 |
+
worst_l2 = combined_results["L2"][worst_asr_idx]
|
192 |
+
worst_linf = combined_results["L_inf"][worst_asr_idx]
|
193 |
+
|
194 |
+
combined_results["ASR_worst"] = worst_asr
|
195 |
+
combined_results["L1_worst"] = worst_l1
|
196 |
+
combined_results["L2_worst"] = worst_l2
|
197 |
+
combined_results["L_inf_worst"] = worst_linf
|
198 |
+
|
199 |
+
return combined_results
|
200 |
+
|
201 |
+
def build_full_results_dict(model_name="resnet50", verbose=False,
|
202 |
+
all_k=[20, 15, 10, 5, 1],
|
203 |
+
all_num_iter=[60, 30],
|
204 |
+
all_search_steps=[1, 9],
|
205 |
+
all_methods=["cwk", "ad", "cvxproj"]):
|
206 |
+
|
207 |
+
if verbose:
|
208 |
+
print ("-" * 100)
|
209 |
+
print ("Results for", model_name)
|
210 |
+
|
211 |
+
results_list = load_all_results()
|
212 |
+
results = OrderedDict()
|
213 |
+
|
214 |
+
for k in all_k:
|
215 |
+
results[k] = OrderedDict()
|
216 |
+
|
217 |
+
for num_binary_search_steps in all_search_steps:
|
218 |
+
results[k][num_binary_search_steps] = OrderedDict()
|
219 |
+
|
220 |
+
for num_iter in all_num_iter:
|
221 |
+
results[k][num_binary_search_steps][num_iter] = OrderedDict()
|
222 |
+
|
223 |
+
for method_name in all_methods:
|
224 |
+
filter = {
|
225 |
+
"loss": eq(method_name),
|
226 |
+
"model": eq(model_name),
|
227 |
+
"k": eq(k),
|
228 |
+
"unguided_iterations": eq(num_iter),
|
229 |
+
"binary_search_steps": eq(num_binary_search_steps)
|
230 |
+
}
|
231 |
+
|
232 |
+
best_param_set, filtered_results = resolve_nonunique_filter(filter, results_list)
|
233 |
+
|
234 |
+
if verbose and best_param_set is not None:
|
235 |
+
print (f"K={k} Lr={best_param_set['unguided_lr']} and loss_coef={best_param_set['topk_loss_coef_upper']} ")
|
236 |
+
|
237 |
+
if best_param_set is None:
|
238 |
+
continue
|
239 |
+
|
240 |
+
assert len(filtered_results) == 5
|
241 |
+
|
242 |
+
combined_results = get_combined_results(filtered_results)
|
243 |
+
|
244 |
+
for key in list(combined_results):
|
245 |
+
if "L1" not in key and "L2" not in key and "L_inf" not in key and "ASR" not in key:
|
246 |
+
del combined_results[key]
|
247 |
+
|
248 |
+
for key in list(combined_results):
|
249 |
+
if "mean" not in key and "worst" not in key and "best" not in key:
|
250 |
+
del combined_results[key]
|
251 |
+
|
252 |
+
results[k][num_binary_search_steps][num_iter][method_name] = combined_results
|
253 |
+
|
254 |
+
return results
|
255 |
+
|
256 |
+
if __name__ == "__main__":
|
257 |
+
build_full_results_dict(model_name="resnet50", verbose=True, all_search_steps=[1], all_methods=["cvxproj"])
|
258 |
+
build_full_results_dict(model_name="densenet121", verbose=True, all_search_steps=[1], all_methods=["cvxproj"])
|
259 |
+
build_full_results_dict(model_name="deit_small", verbose=True, all_search_steps=[1], all_methods=["cvxproj"])
|
260 |
+
build_full_results_dict(model_name="vit_base", verbose=True, all_search_steps=[1], all_methods=["cvxproj"])
|
261 |
+
x = 5
|
modelguidedattacks/run.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pprint import pformat
|
3 |
+
from typing import Any
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import ignite.distributed as idist
|
8 |
+
import yaml
|
9 |
+
from ignite.engine import Events
|
10 |
+
from ignite.metrics import Accuracy, Loss
|
11 |
+
from ignite.utils import manual_seed
|
12 |
+
from torch import nn, optim
|
13 |
+
|
14 |
+
from modelguidedattacks.data.setup import setup_data
|
15 |
+
from modelguidedattacks.losses.boilerplate import BoilerplateLoss
|
16 |
+
from modelguidedattacks.losses.energy import Energy, EnergyLoss
|
17 |
+
from modelguidedattacks.metrics.topk_accuracy import TopKAccuracy
|
18 |
+
from modelguidedattacks.models import setup_model
|
19 |
+
from modelguidedattacks.trainers import setup_evaluator, setup_trainer
|
20 |
+
from modelguidedattacks.utils import setup_parser, setup_output_dir
|
21 |
+
from modelguidedattacks.utils import setup_logging, log_metrics, Engine
|
22 |
+
|
23 |
+
def run(local_rank: int, config: Any):
|
24 |
+
|
25 |
+
print ("Running ", local_rank)
|
26 |
+
# make a certain seed
|
27 |
+
rank = idist.get_rank()
|
28 |
+
manual_seed(config.seed + rank)
|
29 |
+
|
30 |
+
# create output folder
|
31 |
+
config.output_dir = setup_output_dir(config, rank)
|
32 |
+
|
33 |
+
# setup engines logger with python logging
|
34 |
+
# print training configurations
|
35 |
+
logger = setup_logging(config)
|
36 |
+
logger.info("Configuration: \n%s", pformat(vars(config)))
|
37 |
+
(config.output_dir / "config-lock.yaml").write_text(yaml.dump(config))
|
38 |
+
|
39 |
+
# donwload datasets and create dataloaders
|
40 |
+
dataloader_train, dataloader_eval = setup_data(config, rank)
|
41 |
+
|
42 |
+
# model, optimizer, loss function, device
|
43 |
+
device = idist.device()
|
44 |
+
model = idist.auto_model(setup_model(config, idist.device()))
|
45 |
+
loss_fn = BoilerplateLoss().to(device=device)
|
46 |
+
l2_energy_loss = Energy(p=2).to(device)
|
47 |
+
l1_energy_loss = Energy(p=1).to(device)
|
48 |
+
l_inf_energy_loss = Energy(p=torch.inf).to(device)
|
49 |
+
|
50 |
+
evaluator = setup_evaluator(config, model, device)
|
51 |
+
evaluator.logger = logger
|
52 |
+
|
53 |
+
# attach metrics to evaluator
|
54 |
+
accuracy = TopKAccuracy(device=device)
|
55 |
+
metrics = {
|
56 |
+
"ASR": accuracy,
|
57 |
+
"L2 Energy": EnergyLoss(l2_energy_loss, device=device),
|
58 |
+
"L1 Energy": EnergyLoss(l1_energy_loss, device=device),
|
59 |
+
"L_inf Energy": EnergyLoss(l_inf_energy_loss, device=device),
|
60 |
+
|
61 |
+
"L2 Energy Min": EnergyLoss(l2_energy_loss, reduction="min", device=device),
|
62 |
+
"L1 Energy Min": EnergyLoss(l1_energy_loss, reduction="min", device=device),
|
63 |
+
"L_inf Energy Min": EnergyLoss(l_inf_energy_loss, reduction="min", device=device),
|
64 |
+
|
65 |
+
"L2 Energy Max": EnergyLoss(l2_energy_loss, reduction="max", device=device),
|
66 |
+
"L1 Energy Max": EnergyLoss(l1_energy_loss, reduction="max", device=device),
|
67 |
+
"L_inf Energy Max": EnergyLoss(l_inf_energy_loss, reduction="max", device=device)
|
68 |
+
}
|
69 |
+
for name, metric in metrics.items():
|
70 |
+
metric.attach(evaluator, name)
|
71 |
+
|
72 |
+
if config.guide_model in ["unguided", "instance_guided"]:
|
73 |
+
|
74 |
+
first_batch_passed = False
|
75 |
+
early_stopped = False
|
76 |
+
|
77 |
+
def compute_metrics(engine: Engine, tag: str):
|
78 |
+
nonlocal first_batch_passed
|
79 |
+
nonlocal early_stopped
|
80 |
+
|
81 |
+
for name, metric in metrics.items():
|
82 |
+
metric.completed(engine, name)
|
83 |
+
|
84 |
+
if not first_batch_passed:
|
85 |
+
if engine.state.metrics["ASR"] < 1e-3:
|
86 |
+
print ("Early stop, assuming no success throughout")
|
87 |
+
early_stopped = True
|
88 |
+
engine.terminate()
|
89 |
+
else:
|
90 |
+
first_batch_passed = True
|
91 |
+
|
92 |
+
evaluator.add_event_handler(
|
93 |
+
Events.ITERATION_COMPLETED(every=config.log_every_iters),
|
94 |
+
compute_metrics,
|
95 |
+
tag="eval",
|
96 |
+
)
|
97 |
+
|
98 |
+
evaluator.add_event_handler(
|
99 |
+
Events.ITERATION_COMPLETED(every=config.log_every_iters),
|
100 |
+
log_metrics,
|
101 |
+
tag="eval",
|
102 |
+
)
|
103 |
+
|
104 |
+
evaluator.run(dataloader_eval, epoch_length=config.eval_epoch_length)
|
105 |
+
log_metrics(evaluator, "eval")
|
106 |
+
|
107 |
+
if len(config.out_dir) > 0:
|
108 |
+
# Store results in out_dir
|
109 |
+
os.makedirs(config.out_dir, exist_ok=True)
|
110 |
+
metrics_dict = evaluator.state.metrics
|
111 |
+
metrics_dict["config"] = config
|
112 |
+
metrics_dict["early_stopped"] = early_stopped
|
113 |
+
|
114 |
+
metrics_file_path = os.path.join(config.out_dir, "results.save")
|
115 |
+
torch.save(metrics_dict, metrics_file_path)
|
116 |
+
|
117 |
+
# No need to train with an unguided model
|
118 |
+
return
|
119 |
+
|
120 |
+
assert False, "This code path is for the future"
|
121 |
+
|
122 |
+
# main entrypoint
|
123 |
+
def launch(config=None):
|
124 |
+
if config is None:
|
125 |
+
config_path = sys.argv[1]
|
126 |
+
config = setup_parser(config_path).parse_args(sys.argv[2:])
|
127 |
+
|
128 |
+
backend = config.backend
|
129 |
+
nproc_per_node = config.nproc_per_node
|
130 |
+
|
131 |
+
if nproc_per_node == 0 or backend is None:
|
132 |
+
backend = None
|
133 |
+
nproc_per_node = None
|
134 |
+
|
135 |
+
with idist.Parallel(backend, nproc_per_node) as p:
|
136 |
+
p.run(run, config=config)
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
launch()
|
modelguidedattacks/trainers.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Union
|
2 |
+
|
3 |
+
import ignite.distributed as idist
|
4 |
+
import torch
|
5 |
+
from ignite.engine import DeterministicEngine, Engine, Events
|
6 |
+
from torch.cuda.amp import autocast
|
7 |
+
from torch.nn import Module
|
8 |
+
from torch.optim import Optimizer
|
9 |
+
from torch.utils.data import DistributedSampler, Sampler
|
10 |
+
|
11 |
+
|
12 |
+
def setup_trainer(
|
13 |
+
config: Any,
|
14 |
+
model: Module,
|
15 |
+
optimizer: Optimizer,
|
16 |
+
loss_fn: Module,
|
17 |
+
device: Union[str, torch.device],
|
18 |
+
train_sampler: Sampler,
|
19 |
+
) -> Union[Engine, DeterministicEngine]:
|
20 |
+
def train_function(engine: Union[Engine, DeterministicEngine], batch: Any):
|
21 |
+
if config.overfit:
|
22 |
+
# No batch norm
|
23 |
+
model.eval()
|
24 |
+
else:
|
25 |
+
model.train()
|
26 |
+
|
27 |
+
samples = batch[0].to(device, non_blocking=True)
|
28 |
+
targets = batch[1].to(device, non_blocking=True)
|
29 |
+
attack_targets = batch[2].to(device, non_blocking=True)
|
30 |
+
sample_ids = batch[3].to(device, non_blocking=True)
|
31 |
+
|
32 |
+
with autocast(config.use_amp):
|
33 |
+
outputs = model(samples, attack_targets)
|
34 |
+
loss = loss_fn(outputs, attack_targets, targets)
|
35 |
+
|
36 |
+
loss.backward()
|
37 |
+
optimizer.step()
|
38 |
+
optimizer.zero_grad()
|
39 |
+
|
40 |
+
train_loss = loss.item()
|
41 |
+
engine.state.metrics = {
|
42 |
+
"epoch": engine.state.epoch,
|
43 |
+
"train_loss": train_loss,
|
44 |
+
}
|
45 |
+
return {"train_loss": train_loss}
|
46 |
+
|
47 |
+
|
48 |
+
trainer = Engine(train_function)
|
49 |
+
|
50 |
+
# set epoch for distributed sa5mpler
|
51 |
+
@trainer.on(Events.EPOCH_STARTED)
|
52 |
+
def set_epoch():
|
53 |
+
if idist.get_world_size() > 1 and isinstance(train_sampler, DistributedSampler):
|
54 |
+
train_sampler.set_epoch(trainer.state.epoch - 1)
|
55 |
+
|
56 |
+
return trainer
|
57 |
+
|
58 |
+
|
59 |
+
def setup_evaluator(
|
60 |
+
config: Any,
|
61 |
+
model: Module,
|
62 |
+
device: Union[str, torch.device],
|
63 |
+
) -> Engine:
|
64 |
+
@torch.no_grad()
|
65 |
+
def eval_function(engine: Engine, batch: Any):
|
66 |
+
model.eval()
|
67 |
+
|
68 |
+
samples, gt_labels, attack_targets, sample_ids = batch
|
69 |
+
|
70 |
+
samples = samples.to(device, non_blocking=True)
|
71 |
+
gt_labels = gt_labels.to(device, non_blocking=True)
|
72 |
+
attack_targets = attack_targets.to(device, non_blocking=True)
|
73 |
+
sample_ids = sample_ids.to(device, non_blocking=True)
|
74 |
+
|
75 |
+
with autocast(config.use_amp):
|
76 |
+
outputs, perturbations = model(samples, attack_targets, gt_labels)
|
77 |
+
|
78 |
+
return outputs, attack_targets, {
|
79 |
+
"gt_targets": gt_labels,
|
80 |
+
"perturbations": perturbations
|
81 |
+
}
|
82 |
+
|
83 |
+
return Engine(eval_function)
|
modelguidedattacks/utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from datetime import datetime
|
4 |
+
from logging import Logger
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any, Mapping, Optional, Union
|
7 |
+
|
8 |
+
import ignite.distributed as idist
|
9 |
+
import torch
|
10 |
+
import yaml
|
11 |
+
from ignite.contrib.engines import common
|
12 |
+
from ignite.engine import Engine
|
13 |
+
from ignite.engine.events import Events
|
14 |
+
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
|
15 |
+
from ignite.handlers.early_stopping import EarlyStopping
|
16 |
+
from ignite.handlers.terminate_on_nan import TerminateOnNan
|
17 |
+
from ignite.handlers.time_limit import TimeLimit
|
18 |
+
from ignite.utils import setup_logger
|
19 |
+
|
20 |
+
|
21 |
+
def setup_parser(config_path="base_config.yaml"):
|
22 |
+
with open(config_path, "r") as f:
|
23 |
+
config = yaml.safe_load(f.read())
|
24 |
+
|
25 |
+
parser = ArgumentParser()
|
26 |
+
parser.add_argument("--config", default=None, type=str)
|
27 |
+
parser.add_argument("--backend", default=None, type=str)
|
28 |
+
for k, v in config.items():
|
29 |
+
if isinstance(v, bool):
|
30 |
+
parser.add_argument(f"--{k}", action="store_true")
|
31 |
+
else:
|
32 |
+
parser.add_argument(f"--{k}", default=v, type=type(v))
|
33 |
+
|
34 |
+
return parser
|
35 |
+
|
36 |
+
|
37 |
+
def log_metrics(engine: Engine, tag: str) -> None:
|
38 |
+
"""Log `engine.state.metrics` with given `engine` and `tag`.
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
engine
|
43 |
+
instance of `Engine` which metrics to log.
|
44 |
+
tag
|
45 |
+
a string to add at the start of output.
|
46 |
+
"""
|
47 |
+
metrics_format = "{0} [{1}/{2}]: {3}".format(
|
48 |
+
tag, engine.state.epoch, engine.state.iteration, engine.state.metrics
|
49 |
+
)
|
50 |
+
|
51 |
+
epoch_size = engine.state.epoch_length
|
52 |
+
local_iteration = engine.state.iteration - epoch_size * (engine.state.epoch - 1)
|
53 |
+
metrics_format = f"{tag} Epoch {engine.state.epoch} - [{local_iteration} / {epoch_size}] : {engine.state.metrics}"
|
54 |
+
|
55 |
+
engine.logger.info(metrics_format)
|
56 |
+
|
57 |
+
|
58 |
+
def resume_from(
|
59 |
+
to_load: Mapping,
|
60 |
+
checkpoint_fp: Union[str, Path],
|
61 |
+
logger: Logger,
|
62 |
+
strict: bool = True,
|
63 |
+
model_dir: Optional[str] = None,
|
64 |
+
) -> None:
|
65 |
+
"""Loads state dict from a checkpoint file to resume the training.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
to_load
|
70 |
+
a dictionary with objects, e.g. {“model”: model, “optimizer”: optimizer, ...}
|
71 |
+
checkpoint_fp
|
72 |
+
path to the checkpoint file
|
73 |
+
logger
|
74 |
+
to log info about resuming from a checkpoint
|
75 |
+
strict
|
76 |
+
whether to strictly enforce that the keys in `state_dict` match the keys
|
77 |
+
returned by this module’s `state_dict()` function. Default: True
|
78 |
+
model_dir
|
79 |
+
directory in which to save the object
|
80 |
+
"""
|
81 |
+
if isinstance(checkpoint_fp, str) and checkpoint_fp.startswith("https://"):
|
82 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
83 |
+
checkpoint_fp,
|
84 |
+
model_dir=model_dir,
|
85 |
+
map_location="cpu",
|
86 |
+
check_hash=True,
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
if isinstance(checkpoint_fp, str):
|
90 |
+
checkpoint_fp = Path(checkpoint_fp)
|
91 |
+
|
92 |
+
if not checkpoint_fp.exists():
|
93 |
+
raise FileNotFoundError(f"Given {str(checkpoint_fp)} does not exist.")
|
94 |
+
checkpoint = torch.load(checkpoint_fp, map_location="cpu")
|
95 |
+
|
96 |
+
Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint, strict=strict)
|
97 |
+
logger.info("Successfully resumed from a checkpoint: %s", checkpoint_fp)
|
98 |
+
|
99 |
+
|
100 |
+
def setup_output_dir(config: Any, rank: int) -> Path:
|
101 |
+
"""Create output folder."""
|
102 |
+
if rank == 0:
|
103 |
+
now = datetime.now().strftime("%Y%m%d-%H%M%S")
|
104 |
+
name = f"{now}-backend-{config.backend}-lr-{config.lr}"
|
105 |
+
path = Path(config.output_dir, name)
|
106 |
+
path.mkdir(parents=True, exist_ok=True)
|
107 |
+
config.output_dir = path.as_posix()
|
108 |
+
|
109 |
+
return Path(idist.broadcast(config.output_dir, src=0))
|
110 |
+
|
111 |
+
|
112 |
+
def setup_logging(config: Any) -> Logger:
|
113 |
+
"""Setup logger with `ignite.utils.setup_logger()`.
|
114 |
+
|
115 |
+
Parameters
|
116 |
+
----------
|
117 |
+
config
|
118 |
+
config object. config has to contain `verbose` and `output_dir` attribute.
|
119 |
+
|
120 |
+
Returns
|
121 |
+
-------
|
122 |
+
logger
|
123 |
+
an instance of `Logger`
|
124 |
+
"""
|
125 |
+
green = "\033[32m"
|
126 |
+
reset = "\033[0m"
|
127 |
+
logger = setup_logger(
|
128 |
+
name=f"{green}[ignite]{reset}",
|
129 |
+
level=logging.DEBUG if config.debug else logging.INFO,
|
130 |
+
format="%(name)s: %(message)s",
|
131 |
+
filepath=config.output_dir / "training-info.log",
|
132 |
+
)
|
133 |
+
return logger
|
print_results.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modelguidedattacks import results
|
2 |
+
|
3 |
+
results_list = results.load_all_results()
|
4 |
+
|
5 |
+
filter = {
|
6 |
+
"loss": results.in_set(["cwk"]),
|
7 |
+
"model": results.eq("vit_base"),
|
8 |
+
"k": results.eq(5),
|
9 |
+
"binary_search_steps": results.eq(1),
|
10 |
+
"unguided_iterations": results.eq(30),
|
11 |
+
# "topk_loss_coef_upper": results.eq(20),
|
12 |
+
# "unguided_lr": results.eq(0.002),
|
13 |
+
"cvx_proj_margin": results.eq(0.2),
|
14 |
+
# "seed": results.eq(10),
|
15 |
+
}
|
16 |
+
|
17 |
+
filtered_results = results.filter_results(filter, results_list)
|
18 |
+
|
19 |
+
print ("Found", len(filtered_results))
|
20 |
+
|
21 |
+
for result in filtered_results:
|
22 |
+
print ("-" * 30)
|
23 |
+
for key, val in result.items():
|
24 |
+
print (key, "=", val)
|
25 |
+
print ("-" * 30)
|
print_table.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pylatex import Document, Section, Subsection, Tabular, MultiColumn,\
|
2 |
+
MultiRow, NoEscape
|
3 |
+
from pylatex.math import Math
|
4 |
+
from collections import OrderedDict
|
5 |
+
import copy
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from modelguidedattacks.results import build_full_results_dict
|
9 |
+
|
10 |
+
def result_to_str(result, long=False):
|
11 |
+
if result is None or np.isinf(result) or np.isnan(result):
|
12 |
+
return "-"
|
13 |
+
elif long:
|
14 |
+
return f"{result:.4f}"
|
15 |
+
else:
|
16 |
+
return f"{result:.2f}"
|
17 |
+
|
18 |
+
"""
|
19 |
+
results top level will be keyed by K
|
20 |
+
next level will be binary search steps
|
21 |
+
next level will be keyed by iterations
|
22 |
+
next level will be keyed by method
|
23 |
+
"""
|
24 |
+
|
25 |
+
only_mean = False
|
26 |
+
model_name = "resnet50"
|
27 |
+
results = build_full_results_dict(model_name)
|
28 |
+
|
29 |
+
model_to_tex = {
|
30 |
+
"resnet50": "Resnet-50",
|
31 |
+
"densenet121": "Densenet121",
|
32 |
+
"deit_small": "DeiT-S",
|
33 |
+
"vit_base": "ViT$_{B}$"
|
34 |
+
}
|
35 |
+
|
36 |
+
# Preprocess all results and select bests
|
37 |
+
for top_k, bs_dict in results.items():
|
38 |
+
for num_bs, iter_dict in bs_dict.items():
|
39 |
+
for num_iter, method_dict in iter_dict.items():
|
40 |
+
metric_bests = {}
|
41 |
+
metrics_compared = {}
|
42 |
+
|
43 |
+
for method_name, method_results in method_dict.items():
|
44 |
+
for metric_name, metric_value in method_results.items():
|
45 |
+
reduction_func = max if "ASR" in metric_name else min
|
46 |
+
|
47 |
+
if metric_name not in metric_bests:
|
48 |
+
metric_bests[metric_name] = 0. if reduction_func is max else np.Infinity
|
49 |
+
metrics_compared[metric_name] = 0
|
50 |
+
|
51 |
+
if metric_value is not None:
|
52 |
+
metric_bests[metric_name] = reduction_func(metric_bests[metric_name], metric_value)
|
53 |
+
metrics_compared[metric_name] += 1
|
54 |
+
|
55 |
+
for method_name, method_results in method_dict.items():
|
56 |
+
for metric_name, metric_value in method_results.items():
|
57 |
+
method_results[metric_name] = result_to_str(metric_value, "inf" in metric_name or "ASR" in metric_name)
|
58 |
+
|
59 |
+
if metric_value is not None and np.allclose(metric_value, metric_bests[metric_name]) \
|
60 |
+
and metrics_compared[metric_name] > 1:
|
61 |
+
method_results[metric_name] = rf"\textbf{{ {method_results[metric_name]} }}"
|
62 |
+
|
63 |
+
method_tex = {
|
64 |
+
"cwk": r"CW^K",
|
65 |
+
"ad": r"AD",
|
66 |
+
"cvxproj": r"\textbf{QuadAttac$K$}"
|
67 |
+
}
|
68 |
+
|
69 |
+
doc = Document("multirow")
|
70 |
+
|
71 |
+
protocol_cols = 1
|
72 |
+
attack_method_cols = 1
|
73 |
+
best_cols = 4
|
74 |
+
mean_cols = 4
|
75 |
+
worst_cols = 4
|
76 |
+
|
77 |
+
if only_mean:
|
78 |
+
col_widths = [protocol_cols, attack_method_cols, mean_cols]
|
79 |
+
else:
|
80 |
+
col_widths = [protocol_cols, attack_method_cols, best_cols, mean_cols, worst_cols]
|
81 |
+
|
82 |
+
total_cols = sum(col_widths)
|
83 |
+
tabular_string = "|"
|
84 |
+
|
85 |
+
for w in col_widths:
|
86 |
+
tabular_string += "l" * w + "|"
|
87 |
+
|
88 |
+
table1 = Tabular(tabular_string)
|
89 |
+
table1.add_hline()
|
90 |
+
table1.add_row((MultiColumn(total_cols, align='|c|', data=NoEscape(model_to_tex[model_name])),))
|
91 |
+
table1.add_hline()
|
92 |
+
|
93 |
+
if only_mean:
|
94 |
+
table1.add_row((
|
95 |
+
MultiRow(2, data="Protocol"),
|
96 |
+
MultiRow(2, data="Attack Method"),
|
97 |
+
MultiColumn(mean_cols, align="|c|", data="Mean"),
|
98 |
+
))
|
99 |
+
else:
|
100 |
+
table1.add_row((
|
101 |
+
MultiRow(2, data="Protocol"),
|
102 |
+
MultiRow(2, data="Attack Method"),
|
103 |
+
MultiColumn(best_cols, align="|c|", data="Best"),
|
104 |
+
MultiColumn(mean_cols, align="|c|", data="Mean"),
|
105 |
+
MultiColumn(worst_cols, align="|c|", data="Worst"),
|
106 |
+
))
|
107 |
+
|
108 |
+
table1.add_hline(start=protocol_cols + attack_method_cols + 1)
|
109 |
+
|
110 |
+
num_result_colums = 1 if only_mean else 3
|
111 |
+
table1.add_row("",
|
112 |
+
"",
|
113 |
+
*(NoEscape(r"ASR$\uparrow$"),
|
114 |
+
NoEscape(r"$\ell_1 \downarrow$"),
|
115 |
+
NoEscape(r"$\ell_2 \downarrow$"),
|
116 |
+
NoEscape(r"$\ell_{\infty} \downarrow$"))*num_result_colums
|
117 |
+
)
|
118 |
+
|
119 |
+
table1.add_hline()
|
120 |
+
|
121 |
+
for top_k, bs_dict in results.items():
|
122 |
+
|
123 |
+
total_results = 0
|
124 |
+
# Count total results
|
125 |
+
for _, iter_dict in bs_dict.items():
|
126 |
+
for num_iter, method_dict in iter_dict.items():
|
127 |
+
total_results += len(method_dict)
|
128 |
+
|
129 |
+
top_k_latex_obj = MultiRow(total_results, data=f"Top-{top_k}")
|
130 |
+
|
131 |
+
shown_topk_obj = False
|
132 |
+
|
133 |
+
for bs_steps, iter_dict in bs_dict.items():
|
134 |
+
for num_iter, method_dict in iter_dict.items():
|
135 |
+
for method_name, method_results in method_dict.items():
|
136 |
+
first_obj = top_k_latex_obj if not shown_topk_obj else ""
|
137 |
+
shown_topk_obj = True
|
138 |
+
|
139 |
+
row_results = []
|
140 |
+
|
141 |
+
reduction_names = ["mean"] if only_mean else ["best", "mean", "worst"]
|
142 |
+
for reduction in reduction_names:
|
143 |
+
for metric in ["ASR", "L1", "L2", "L_inf"]:
|
144 |
+
result_key = f"{metric}_{reduction}"
|
145 |
+
long_result = "inf" in metric
|
146 |
+
row_results.append(
|
147 |
+
NoEscape(method_results[result_key])
|
148 |
+
)
|
149 |
+
|
150 |
+
table1.add_row(
|
151 |
+
first_obj,
|
152 |
+
NoEscape("$" + method_tex[method_name] +
|
153 |
+
f"_{{{bs_steps}x{num_iter}}}$"),
|
154 |
+
*row_results
|
155 |
+
)
|
156 |
+
|
157 |
+
table1.add_hline(start=protocol_cols + 1)
|
158 |
+
|
159 |
+
table1.add_hline()
|
160 |
+
|
161 |
+
# doc.append(table1)
|
162 |
+
|
163 |
+
print(table1.dumps())
|
result_stats.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import sys
|
3 |
+
from modelguidedattacks import results
|
4 |
+
|
5 |
+
results_list = results.load_all_results()
|
6 |
+
|
7 |
+
filter = {
|
8 |
+
"loss": results.in_set(["cvxproj"]),
|
9 |
+
"model": results.eq("resnet50"),
|
10 |
+
"k": results.eq(20),
|
11 |
+
"binary_search_steps": results.eq(1),
|
12 |
+
"unguided_iterations": results.eq(60),
|
13 |
+
# "topk_loss_coef_upper": results.eq(20),
|
14 |
+
# "unguided_lr": results.eq(0.002),
|
15 |
+
"cvx_proj_margin": results.eq(0.2),
|
16 |
+
"topk_loss_coef_upper": results.gte(12)
|
17 |
+
# "seed": results.eq(10),
|
18 |
+
}
|
19 |
+
|
20 |
+
filtered_results = results.filter_results(filter, results_list)
|
21 |
+
|
22 |
+
combined_results = {}
|
23 |
+
|
24 |
+
for result in filtered_results:
|
25 |
+
for key in result:
|
26 |
+
if key not in combined_results:
|
27 |
+
combined_results[key] = []
|
28 |
+
|
29 |
+
combined_results[key].append(result[key])
|
30 |
+
|
31 |
+
unique_runs = len(np.unique(combined_results["seed"]))
|
32 |
+
print ("Stats from", len(filtered_results))
|
33 |
+
# assert len(combined_results["seed"]) == unique_runs
|
34 |
+
|
35 |
+
for key, val in list(combined_results.items()):
|
36 |
+
if key in ["ASR", "L1", "L2", "L_inf"]:
|
37 |
+
val = np.array(val)
|
38 |
+
combined_results[f"{key}_mean"] = np.mean(val[np.isfinite(val)])
|
39 |
+
combined_results[f"{key}_median"] = np.median(val[np.isfinite(val)])
|
40 |
+
|
41 |
+
# Coupled results
|
42 |
+
best_asr_idx = np.argmax(combined_results["ASR"])
|
43 |
+
best_asr = combined_results["ASR"][best_asr_idx]
|
44 |
+
best_l1 = combined_results["L1"][best_asr_idx]
|
45 |
+
best_l2 = combined_results["L2"][best_asr_idx]
|
46 |
+
best_linf = combined_results["L_inf"][best_asr_idx]
|
47 |
+
|
48 |
+
combined_results["ASR_best"] = best_asr
|
49 |
+
combined_results["L1_best"] = best_l1
|
50 |
+
combined_results["L2_best"] = best_l2
|
51 |
+
combined_results["L_inf_best"] = best_linf
|
52 |
+
|
53 |
+
worst_asr_idx = np.argmin(combined_results["ASR"])
|
54 |
+
worst_asr = combined_results["ASR"][worst_asr_idx]
|
55 |
+
worst_l1 = combined_results["L1"][worst_asr_idx]
|
56 |
+
worst_l2 = combined_results["L2"][worst_asr_idx]
|
57 |
+
worst_linf = combined_results["L_inf"][worst_asr_idx]
|
58 |
+
|
59 |
+
combined_results["ASR_worst"] = worst_asr
|
60 |
+
combined_results["L1_worst"] = worst_l1
|
61 |
+
combined_results["L2_worst"] = worst_l2
|
62 |
+
combined_results["L_inf_worst"] = worst_linf
|
63 |
+
|
64 |
+
draw_keys = ["best", "mean", "worst"]
|
65 |
+
val_keys = ["ASR", "L1", "L2", "L_inf"]
|
66 |
+
|
67 |
+
print ("---------------")
|
68 |
+
for draw_key in draw_keys:
|
69 |
+
for val_key in val_keys:
|
70 |
+
key = val_key + "_" + draw_key
|
71 |
+
val = combined_results[key]
|
72 |
+
|
73 |
+
print (key, val)
|
74 |
+
print ("---------------")
|
75 |
+
|
76 |
+
for draw_key in draw_keys:
|
77 |
+
for val_key in val_keys:
|
78 |
+
key = val_key + "_" + draw_key
|
79 |
+
val = combined_results[key]
|
80 |
+
|
81 |
+
if np.isinf(val):
|
82 |
+
val = "N/A"
|
83 |
+
|
84 |
+
sep = "&"
|
85 |
+
if isinstance(val, str):
|
86 |
+
sys.stdout.write(f"{val} {sep} ")
|
87 |
+
elif "inf" in key:
|
88 |
+
sys.stdout.write(f"{val:.3f} {sep} ")
|
89 |
+
else:
|
90 |
+
sys.stdout.write(f"{val:.2f} {sep} ")
|
setup.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
from setuptools import find_packages, setup
|
4 |
+
|
5 |
+
def read(*paths, **kwargs):
|
6 |
+
"""Read the contents of a text file safely.
|
7 |
+
>>> read("project_name", "VERSION")
|
8 |
+
'0.1.0'
|
9 |
+
>>> read("README.md")
|
10 |
+
...
|
11 |
+
"""
|
12 |
+
|
13 |
+
content = ""
|
14 |
+
with io.open(
|
15 |
+
os.path.join(os.path.dirname(__file__), *paths),
|
16 |
+
encoding=kwargs.get("encoding", "utf8"),
|
17 |
+
) as open_file:
|
18 |
+
content = open_file.read().strip()
|
19 |
+
return content
|
20 |
+
|
21 |
+
|
22 |
+
def read_requirements(path):
|
23 |
+
return [
|
24 |
+
line.strip()
|
25 |
+
for line in read(path).split("\n")
|
26 |
+
if not line.startswith(('"', "#", "-", "git+"))
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
setup(
|
31 |
+
name="modelguidedattacks",
|
32 |
+
version="0.1",
|
33 |
+
description="Adversarial attacks",
|
34 |
+
url="",
|
35 |
+
long_description=read("README.md"),
|
36 |
+
long_description_content_type="text/markdown",
|
37 |
+
author="NCSU",
|
38 |
+
packages=["modelguidedattacks"],
|
39 |
+
install_requires=read_requirements("requirements.txt"),
|
40 |
+
)
|