Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import os | |
| import sys | |
| import torch | |
| from peft import PeftModel | |
| from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer | |
| from alpaca.utils.prompter import Prompter | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| else: | |
| device = "cpu" | |
| try: | |
| if torch.backends.mps.is_available(): | |
| device = "mps" | |
| except: # noqa: E722 | |
| pass | |
| class AlpacaLora: | |
| def __init__(self, load_8bit: bool = True, | |
| base_model: str = "decapoda-research/llama-7b-hf", | |
| lora_weights: str = "tloen/alpaca-lora-7b", | |
| prompt_template: str = ""): | |
| base_model = base_model or os.environ.get("BASE_MODEL", "") | |
| assert ( | |
| base_model | |
| ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" | |
| self.prompter = Prompter(prompt_template) | |
| self.tokenizer = LlamaTokenizer.from_pretrained(base_model) | |
| if device == "cuda": | |
| self.model = LlamaForCausalLM.from_pretrained( | |
| base_model, | |
| load_in_8bit=load_8bit, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| ) | |
| self.model = PeftModel.from_pretrained( | |
| self.model, | |
| lora_weights, | |
| torch_dtype=torch.float16, | |
| ) | |
| elif device == "mps": | |
| self.model = LlamaForCausalLM.from_pretrained( | |
| base_model, | |
| device_map={"": device}, | |
| torch_dtype=torch.float16, | |
| ) | |
| self.model = PeftModel.from_pretrained( | |
| self.model, | |
| lora_weights, | |
| device_map={"": device}, | |
| torch_dtype=torch.float16, | |
| ) | |
| else: | |
| self.model = LlamaForCausalLM.from_pretrained( | |
| base_model, device_map={"": device}, low_cpu_mem_usage=True | |
| ) | |
| self.model = PeftModel.from_pretrained( | |
| self.model, | |
| lora_weights, | |
| device_map={"": device}, | |
| ) | |
| # unwind broken decapoda-research config | |
| self.model.config.pad_token_id = self.tokenizer.pad_token_id = 0 # unk | |
| self.model.config.bos_token_id = 1 | |
| self.model.config.eos_token_id = 2 | |
| if not load_8bit: | |
| self.model.half() # seems to fix bugs for some users. | |
| self.model.eval() | |
| if torch.__version__ >= "2" and sys.platform != "win32": | |
| model = torch.compile(self.model) | |
| def lora_generate(self, instruction, input): | |
| # evaluate | |
| temperature = 0 | |
| top_p = 0.75 | |
| top_k = 40 | |
| num_beams = 4 | |
| max_new_tokens = 128 | |
| stream_output = False | |
| prompt = self.prompter.generate_prompt(instruction, input) | |
| inputs = self.tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs["input_ids"].to(device) | |
| generation_config = GenerationConfig( | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| num_beams=num_beams, | |
| ) | |
| generate_params = { | |
| "input_ids": input_ids, | |
| "generation_config": generation_config, | |
| "return_dict_in_generate": True, | |
| "output_scores": True, | |
| "max_new_tokens": max_new_tokens, | |
| } | |
| with torch.no_grad(): | |
| generation_output = self.model.generate( | |
| input_ids=input_ids, | |
| generation_config=generation_config, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| s = generation_output.sequences[0] | |
| output = self.tokenizer.decode(s) | |
| return self.prompter.get_response(output), prompt | |
| # PARAMS | |
| load_8bit: bool = True | |
| base_model: str = "decapoda-research/llama-7b-hf" | |
| lora_weights: str = "./lora-alpaca" # "tloen/alpaca-lora-7b" | |
| prompt_template: str = "" | |
| server_name: str = "0.0.0.0" | |
| share_gradio: bool = False | |
