File size: 3,589 Bytes
2890e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
local env = import "../env.jsonnet";

local dataset_path = env.str("DATA_PATH", "data/ace/events");
local ontology_path = "data/ace/ontology.tsv";

local debug = false;

# embedding
local label_dim = 64;
local pretrained_model = env.str("ENCODER", "roberta-large");

# module
local dropout = 0.2;
local bio_dim = 512;
local bio_layers = 2;
local span_typing_dims = [256, 256];
local event_smoothing_factor = env.json("SMOOTHING", "0.0");
local arg_smoothing_factor = env.json("SMOOTHING", "0.0");
local layer_fix = 0;

# training
local typing_loss_factor = 8.0;
local grad_acc = env.json("GRAD_ACC", "1");
local max_training_tokens = 512;
local max_inference_tokens = 1024;
local lr = env.json("LR", "1e-3");
local cuda_devices = env.json("CUDA_DEVICES", "[0]");

{
    dataset_reader: {
        type: "concrete",
        debug: debug,
        pretrained_model: pretrained_model,
        ignore_label: false,
        [ if debug then "max_instances" ]: 128,
        event_smoothing_factor: event_smoothing_factor,
        arg_smoothing_factor: event_smoothing_factor,
    },
    train_data_path: dataset_path + "/train.tar.gz",
    validation_data_path: dataset_path + "/dev.tar.gz",
    test_data_path: dataset_path + "/test.tar.gz",

    datasets_for_vocab_creation: ["train"],

    data_loader: {
        batch_sampler: {
            type: "max_tokens_sampler",
            max_tokens: max_training_tokens,
            sorting_keys: ['tokens']
        }
    },

    validation_data_loader: {
        batch_sampler: {
            type: "max_tokens_sampler",
            max_tokens: max_inference_tokens,
            sorting_keys: ['tokens']
        }
    },

    model: {
        type: "span",
        word_embedding: {
            token_embedders: {
                "pieces": {
                    type: "pretrained_transformer",
                    model_name: pretrained_model,
                }
            },
        },
        span_extractor: {
            type: 'combo',
            sub_extractors: [
                {
                    type: 'self_attentive',
                },
                {
                    type: 'bidirectional_endpoint',
                }
            ]
        },
        span_finder: {
            type: "bio",
            bio_encoder: {
                type: "lstm",
                hidden_size: bio_dim,
                num_layers: bio_layers,
                bidirectional: true,
                dropout: dropout,
            },
            no_label: false,
        },
        span_typing: {
            type: 'mlp',
            hidden_dims: span_typing_dims,
        },
        metrics: [{type: "srl"}],

        ontology_path: ontology_path,
        typing_loss_factor: typing_loss_factor,
        label_dim: label_dim,
        max_decoding_spans: 128,
        max_recursion_depth: 2,
        debug: debug,
    },

    trainer: {
        num_epochs: 128,
        patience: null,
        [if std.length(cuda_devices) == 1 then "cuda_device"]: cuda_devices[0],
        validation_metric: "+arg-c_f",
        num_gradient_accumulation_steps: grad_acc,
        optimizer: {
            type: "transformer",
            base: {
                type: "adam",
                lr: lr,
            },
            embeddings_lr: 0.0,
            encoder_lr: 1e-5,
            pooler_lr: 1e-5,
            layer_fix: layer_fix,
        }
    },

    cuda_devices:: cuda_devices,
    [if std.length(cuda_devices) > 1 then "distributed"]: {
        "cuda_devices": cuda_devices
    },
    [if std.length(cuda_devices) == 1 then "evaluate_on_test"]: true,
}