Spaces:
Build error
Build error
File size: 9,698 Bytes
d323598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from __future__ import annotations
import argparse
import json
import os
import random
import PIL
import torch
from pytorch_lightning import seed_everything
from torchvision import transforms
from . import sample_utils
VERSION2SPECS = {
"vwm": {"config": "configs/inference/vista.yaml", "ckpt": "ckpts/vista.safetensors"}
}
DATASET2SOURCES = {
"NUSCENES": {"data_root": "data/nuscenes", "anno_file": "annos/nuScenes_val.json"},
"IMG": {"data_root": "image_folder"},
}
def parse_args(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument("--version", type=str, default="vwm", help="model version")
parser.add_argument("--dataset", type=str, default="NUSCENES", help="dataset name")
parser.add_argument(
"--save", type=str, default="outputs", help="directory to save samples"
)
parser.add_argument(
"--action",
type=str,
default="free",
help="action mode for control, such as traj, cmd, steer, goal",
)
parser.add_argument(
"--n_rounds", type=int, default=1, help="number of sampling rounds"
)
parser.add_argument(
"--n_frames", type=int, default=25, help="number of frames for each round"
)
parser.add_argument(
"--n_conds",
type=int,
default=1,
help="number of initial condition frames for the first round",
)
parser.add_argument(
"--seed", type=int, default=23, help="random seed for seed_everything"
)
parser.add_argument(
"--height", type=int, default=576, help="target height of the generated video"
)
parser.add_argument(
"--width", type=int, default=1024, help="target width of the generated video"
)
parser.add_argument(
"--cfg_scale",
type=float,
default=2.5,
help="scale of the classifier-free guidance",
)
parser.add_argument(
"--cond_aug", type=float, default=0.0, help="strength of the noise augmentation"
)
parser.add_argument(
"--n_steps", type=int, default=50, help="number of sampling steps"
)
parser.add_argument(
"--rand_gen",
action="store_false",
help="whether to generate samples randomly or sequentially",
)
parser.add_argument(
"--low_vram", action="store_true", help="whether to save memory or not"
)
return parser
def get_sample(
selected_index=0, dataset_name="NUSCENES", num_frames=25, action_mode="free"
):
dataset_dict = DATASET2SOURCES[dataset_name]
action_dict = None
if dataset_name == "IMG":
image_list = os.listdir(dataset_dict["data_root"])
total_length = len(image_list)
while selected_index >= total_length:
selected_index -= total_length
image_file = image_list[selected_index]
path_list = [os.path.join(dataset_dict["data_root"], image_file)] * num_frames
else:
with open(dataset_dict["anno_file"]) as anno_json:
all_samples = json.load(anno_json)
total_length = len(all_samples)
while selected_index >= total_length:
selected_index -= total_length
sample_dict = all_samples[selected_index]
path_list = list()
if dataset_name == "NUSCENES":
for index in range(num_frames):
image_path = os.path.join(
dataset_dict["data_root"], sample_dict["frames"][index]
)
assert os.path.exists(image_path), image_path
path_list.append(image_path)
if action_mode != "free":
action_dict = dict()
if action_mode == "traj" or action_mode == "trajectory":
action_dict["trajectory"] = torch.tensor(sample_dict["traj"][2:])
elif action_mode == "cmd" or action_mode == "command":
action_dict["command"] = torch.tensor(sample_dict["cmd"])
elif action_mode == "steer":
# scene might be empty
if sample_dict["speed"]:
action_dict["speed"] = torch.tensor(sample_dict["speed"][1:])
# scene might be empty
if sample_dict["angle"]:
action_dict["angle"] = (
torch.tensor(sample_dict["angle"][1:]) / 780
)
elif action_mode == "goal":
# point might be invalid
if (
sample_dict["z"] > 0
and 0 < sample_dict["goal"][0] < 1600
and 0 < sample_dict["goal"][1] < 900
):
action_dict["goal"] = torch.tensor(
[
sample_dict["goal"][0] / 1600,
sample_dict["goal"][1] / 900,
]
)
else:
raise ValueError(f"Unsupported action mode {action_mode}")
else:
raise ValueError(f"Invalid dataset {dataset_name}")
return path_list, selected_index, total_length, action_dict
def load_img(file_name, target_height=320, target_width=576, device="cuda"):
if file_name is not None:
image = PIL.Image.open(file_name)
if not image.mode == "RGB":
image = image.convert("RGB")
else:
raise ValueError(f"Invalid image file {file_name}")
ori_w, ori_h = image.size
# print(f"Loaded input image of size ({ori_w}, {ori_h})")
if ori_w / ori_h > target_width / target_height:
tmp_w = int(target_width / target_height * ori_h)
left = (ori_w - tmp_w) // 2
right = (ori_w + tmp_w) // 2
image = image.crop((left, 0, right, ori_h))
elif ori_w / ori_h < target_width / target_height:
tmp_h = int(target_height / target_width * ori_w)
top = (ori_h - tmp_h) // 2
bottom = (ori_h + tmp_h) // 2
image = image.crop((0, top, ori_w, bottom))
image = image.resize((target_width, target_height), resample=PIL.Image.LANCZOS)
if not image.mode == "RGB":
image = image.convert("RGB")
image = transforms.Compose(
[transforms.ToTensor(), transforms.Lambda(lambda x: x * 2.0 - 1.0)]
)(image)
return image.to(device)
if __name__ == "__main__":
parser = parse_args()
opt, unknown = parser.parse_known_args()
sample_utils.set_lowvram_mode(opt.low_vram)
version_dict = VERSION2SPECS[opt.version]
model = sample_utils.init_model(version_dict)
unique_keys = set([x.input_key for x in model.conditioner.embedders])
sample_index = 0
while sample_index >= 0:
seed_everything(opt.seed)
frame_list, sample_index, dataset_length, action_dict = get_sample(
sample_index, opt.dataset, opt.n_frames, opt.action
)
img_seq = list()
for each_path in frame_list:
img = load_img(each_path, opt.height, opt.width)
img_seq.append(img)
images = torch.stack(img_seq)
value_dict = sample_utils.init_embedder_options(unique_keys)
cond_img = img_seq[0][None]
value_dict["cond_frames_without_noise"] = cond_img
value_dict["cond_aug"] = opt.cond_aug
value_dict["cond_frames"] = cond_img + opt.cond_aug * torch.randn_like(cond_img)
if action_dict is not None:
for key, value in action_dict.items():
value_dict[key] = value
if opt.n_rounds > 1:
guider = "TrianglePredictionGuider"
else:
guider = "VanillaCFG"
sampler = sample_utils.init_sampling(
guider=guider,
steps=opt.n_steps,
cfg_scale=opt.cfg_scale,
num_frames=opt.n_frames,
)
uc_keys = [
"cond_frames",
"cond_frames_without_noise",
"command",
"trajectory",
"speed",
"angle",
"goal",
]
out = sample_utils.do_sample(
images,
model,
sampler,
value_dict,
num_rounds=opt.n_rounds,
num_frames=opt.n_frames,
force_uc_zero_embeddings=uc_keys,
initial_cond_indices=[index for index in range(opt.n_conds)],
)
if isinstance(out, (tuple, list)):
samples, samples_z, inputs = out
virtual_path = os.path.join(opt.save, "virtual")
real_path = os.path.join(opt.save, "real")
sample_utils.perform_save_locally(
virtual_path, samples, "videos", opt.dataset, sample_index
)
sample_utils.perform_save_locally(
virtual_path, samples, "grids", opt.dataset, sample_index
)
sample_utils.perform_save_locally(
virtual_path, samples, "images", opt.dataset, sample_index
)
sample_utils.perform_save_locally(
real_path, inputs, "videos", opt.dataset, sample_index
)
sample_utils.perform_save_locally(
real_path, inputs, "grids", opt.dataset, sample_index
)
sample_utils.perform_save_locally(
real_path, inputs, "images", opt.dataset, sample_index
)
else:
raise TypeError
if opt.rand_gen:
sample_index += random.randint(1, dataset_length - 1)
else:
sample_index += 1
if dataset_length <= sample_index:
sample_index = -1
|