die_demo / app.py
gabar92's picture
add citation
086a606
import argparse
import os
from functools import partial
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download
from die_model import UNetDIEModel
from utils import resize_image, make_image_square, cast_pil_image_to_torch_tensor_with_4_channel_dim, remove_square_padding
def die_inference(image_raw, num_of_die_iterations, die_model, device):
"""
Applies the DIE model for document enhancement on a provided image.
"""
# preprocess
image_raw_resized = resize_image(image_raw, 1500)
image_raw_resized_square = make_image_square(image_raw_resized)
image_raw_resized_square_tensor = cast_pil_image_to_torch_tensor_with_4_channel_dim(image_raw_resized_square).to(device)
# convert string to int
num_of_die_iterations = int(num_of_die_iterations)
# inference
image_die = die_model.enhance_document_image(
image_raw_list=[image_raw_resized_square_tensor],
num_of_die_iterations=num_of_die_iterations
)[0]
# postprocess
return remove_square_padding(
original_image=image_raw,
square_image=image_die,
resize_back_to_original=True
)
def main():
"""
Main function to set up and run the Gradio demo.
"""
args = parse_arguments()
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Set up model
die_token = os.getenv("DIE_TOKEN")
args.die_model_path = hf_hub_download(
repo_id="gabar92/die",
filename=args.die_model_path,
use_auth_token=die_token
)
die_model = UNetDIEModel(args=args)
# Prepare example images
example_image_list = [
[Image.open(os.path.join(args.example_image_path, image_path))]
for image_path in os.listdir(args.example_image_path)
]
description = "Welcome to the Document Image Enhancement (DIE) model demo on Hugging Face!\n\n" \
"" \
"This interactive application showcases a specialized AI model developed by " \
"the [Artificial Intelligence group](https://ai.renyi.hu) at the [Alfréd Rényi Institute of Mathematics](https://renyi.hu).\n\n" \
"" \
"Our DIE model is designed to enhance and restore archival and aged document images " \
"by removing various types of degradation, thereby making historical documents more legible " \
"and suitable for Optical Character Recognition (OCR) processing.\n\n" \
"" \
"The model effectively tackles 20-30 types of domain-specific noise found in historical records, " \
"such as scribbles, bleed-through text, faded or worn text, blurriness, textured noise, " \
"and unwanted background elements. " \
"By applying deep learning techniques, specifically a U-Net-based architecture, " \
"the model accurately cleans and clarifies text while preserving original details. " \
"This improved clarity dramatically boosts OCR accuracy, making it an ideal " \
"pre-processing tool in digitization workflows.\n\n" \
"" \
"If you’re interested in learning more about the model’s capabilities or potential applications, " \
"please contact us at: [email protected].\n"
# Partial function for inference with model and device arguments
partial_die_inference = partial(die_inference, die_model=die_model, device=args.device)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Document Image Enhancement (DIE) model")
with gr.Row():
with gr.Column():
gr.Markdown(description)
with gr.Column():
# Display QR code as an image in Gradio
gr.Image(value=Image.open("logo/qr-code.png").resize((400, 400)), label="QR Code")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Degraded Document Image")
num_iterations = gr.Dropdown([1, 2, 3], label="Number of DIE Iterations", value=1)
run_button = gr.Button("Enhance Image")
with gr.Column():
output_image = gr.Image(type="pil", label="Enhanced Document Image")
# Display example images
gr.Examples(
examples=example_image_list,
inputs=[input_image],
label="Example Images - Source: National Archives of Hungary and Budapest City Archives",
)
# Button trigger for inference
run_button.click(partial_die_inference, [input_image, num_iterations], output_image)
demo.launch()
def parse_arguments():
"""
Parses command-line arguments.
:return: argument namespace
"""
parser = argparse.ArgumentParser()
parser.add_argument("--die_model_path", default="2024_08_09_model_epoch_89.pt")
parser.add_argument("--example_image_path", default="example_images")
return parser.parse_args()
if __name__ == "__main__":
main()