vishalkatheriya commited on
Commit
92a4db3
·
verified ·
1 Parent(s): 956e6a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -13
app.py CHANGED
@@ -12,13 +12,13 @@ def load_model():
12
  # Load the model once
13
  client = load_model()
14
 
15
- # Define prompt templates with a specific name for the assistant
16
  def create_prompt(user_message):
17
  return f"""
18
- You are Vishal, a helpful assistant. Respond to the following query as naturally and informatively as possible.
19
 
20
  User: {user_message}
21
- Vishal:
22
  """
23
 
24
  # Function to process the query using the open-source LLM for general chat
@@ -42,7 +42,7 @@ def chat_with_llm(query):
42
  if 'choices' in message and message['choices']:
43
  delta_content = message['choices'][0]['delta'].get('content', '')
44
  response_text += delta_content
45
- response_container.write(response_text) # Update response in real-time
46
  return response_text
47
  except Exception as e:
48
  st.error(f"An error occurred: {e}")
@@ -50,18 +50,24 @@ def chat_with_llm(query):
50
  # Function to process the query for search intent
51
  def process_query_with_llm(query):
52
  prompt = f"User asked: '{query}'. What would be the best search query to use?"
53
- response = client.text_generation(prompt, max_length=50, num_return_sequences=1)
54
- return response[0]['generated_text'].strip()
 
 
55
 
56
  # Function to perform a Google search using the googlesearch-python package
57
  def search_web(query):
58
- search_results = []
59
- for result in search(query, num_results=10):
60
- search_results.append(result)
61
- return search_results
 
 
 
 
62
 
63
  # Streamlit UI
64
- st.title("Interactive Chatbot")
65
 
66
  # Input field for user query
67
  user_input = st.text_input("You:", "")
@@ -95,9 +101,8 @@ if user_input:
95
  st.write("Sorry, I couldn't find any relevant links.")
96
  else:
97
  # Handle general conversation with response streaming
98
- st.write("**Chatbot is typing...**")
99
  response = chat_with_llm(user_input)
100
- st.write(f"**Chatbot:** {response}")
101
 
102
  # import streamlit as st
103
  # from huggingface_hub import InferenceClient
 
12
  # Load the model once
13
  client = load_model()
14
 
15
+ # Define prompt templates with the assistant's new persona
16
  def create_prompt(user_message):
17
  return f"""
18
+ You are Katheriya, a skilled data scientist who helps users find the best information from around the globe. You are highly knowledgeable and provide insightful, detailed responses.
19
 
20
  User: {user_message}
21
+ Katheriya:
22
  """
23
 
24
  # Function to process the query using the open-source LLM for general chat
 
42
  if 'choices' in message and message['choices']:
43
  delta_content = message['choices'][0]['delta'].get('content', '')
44
  response_text += delta_content
45
+ response_container.write(f"**Katheriya:** {response_text}") # Update response in real-time
46
  return response_text
47
  except Exception as e:
48
  st.error(f"An error occurred: {e}")
 
50
  # Function to process the query for search intent
51
  def process_query_with_llm(query):
52
  prompt = f"User asked: '{query}'. What would be the best search query to use?"
53
+
54
+ # Generate response using text_generation without max_length
55
+ response = client.text_generation(prompt) # Removed max_length and num_return_sequences
56
+ return response[0]['generated_text'].strip() if response else "No query generated."
57
 
58
  # Function to perform a Google search using the googlesearch-python package
59
  def search_web(query):
60
+ try:
61
+ search_results = []
62
+ for result in search(query, num_results=10):
63
+ search_results.append(result)
64
+ return search_results
65
+ except Exception as e:
66
+ st.error(f"An error occurred during web search: {e}")
67
+ return []
68
 
69
  # Streamlit UI
70
+ st.title("Interactive Chatbot - Powered by Katheriya")
71
 
72
  # Input field for user query
73
  user_input = st.text_input("You:", "")
 
101
  st.write("Sorry, I couldn't find any relevant links.")
102
  else:
103
  # Handle general conversation with response streaming
 
104
  response = chat_with_llm(user_input)
105
+
106
 
107
  # import streamlit as st
108
  # from huggingface_hub import InferenceClient