Spaces:
Runtime error
Runtime error
Update visualization.py
Browse files- visualization.py +66 -25
visualization.py
CHANGED
|
@@ -217,6 +217,72 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
| 217 |
plt.close()
|
| 218 |
return fig
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
| 221 |
frame_count = int(t * video_fps)
|
| 222 |
|
|
@@ -246,31 +312,6 @@ def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_f
|
|
| 246 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
| 247 |
plt.close(fig)
|
| 248 |
return heatmap_img
|
| 249 |
-
|
| 250 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
| 251 |
-
print(f"Creating heatmap video. Output folder: {output_folder}")
|
| 252 |
-
|
| 253 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 254 |
-
|
| 255 |
-
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
| 256 |
-
heatmap_video_path = os.path.join(output_folder, output_filename)
|
| 257 |
-
|
| 258 |
-
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
| 259 |
-
|
| 260 |
-
# Load the original video
|
| 261 |
-
video = VideoFileClip(video_path)
|
| 262 |
-
|
| 263 |
-
# Get video properties
|
| 264 |
-
width, height = video.w, video.h
|
| 265 |
-
total_frames = int(video.duration * video.fps)
|
| 266 |
-
|
| 267 |
-
# Ensure all MSE arrays have the same length as total_frames
|
| 268 |
-
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
| 269 |
-
np.arange(len(mse_embeddings)), mse_embeddings)
|
| 270 |
-
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
|
| 271 |
-
np.arange(len(mse_posture)), mse_posture)
|
| 272 |
-
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
|
| 273 |
-
np.arange(len(mse_voice)), mse_voice)
|
| 274 |
|
| 275 |
def combine_video_and_heatmap(t):
|
| 276 |
video_frame = video.get_frame(t)
|
|
|
|
| 217 |
plt.close()
|
| 218 |
return fig
|
| 219 |
|
| 220 |
+
|
| 221 |
+
def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames):
|
| 222 |
+
# Create a mask for the most frequent person frames
|
| 223 |
+
mask = df['Frame'].isin(most_frequent_person_frames)
|
| 224 |
+
|
| 225 |
+
# Apply the mask to filter the MSE arrays
|
| 226 |
+
mse_embeddings_filtered = np.where(mask, mse_embeddings, 0)
|
| 227 |
+
mse_posture_filtered = np.where(mask, mse_posture, 0)
|
| 228 |
+
mse_voice_filtered = np.where(mask, mse_voice, 0)
|
| 229 |
+
|
| 230 |
+
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
| 231 |
+
|
| 232 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
| 233 |
+
print(f"Creating heatmap video. Output folder: {output_folder}")
|
| 234 |
+
|
| 235 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 236 |
+
|
| 237 |
+
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
| 238 |
+
heatmap_video_path = os.path.join(output_folder, output_filename)
|
| 239 |
+
|
| 240 |
+
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
| 241 |
+
|
| 242 |
+
# Load the original video
|
| 243 |
+
video = VideoFileClip(video_path)
|
| 244 |
+
|
| 245 |
+
# Get video properties
|
| 246 |
+
width, height = video.w, video.h
|
| 247 |
+
total_frames = int(video.duration * video.fps)
|
| 248 |
+
|
| 249 |
+
# Ensure all MSE arrays have the same length as total_frames
|
| 250 |
+
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
| 251 |
+
np.arange(len(mse_embeddings)), mse_embeddings)
|
| 252 |
+
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
|
| 253 |
+
np.arange(len(mse_posture)), mse_posture)
|
| 254 |
+
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
|
| 255 |
+
np.arange(len(mse_voice)), mse_voice)
|
| 256 |
+
|
| 257 |
+
# Filter MSE arrays for the most frequent person frames
|
| 258 |
+
mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered = filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames)
|
| 259 |
+
|
| 260 |
+
def combine_video_and_heatmap(t):
|
| 261 |
+
video_frame = video.get_frame(t)
|
| 262 |
+
heatmap_frame = create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, video.fps, total_frames, width)
|
| 263 |
+
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
| 264 |
+
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
| 265 |
+
return combined_frame
|
| 266 |
+
|
| 267 |
+
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
| 268 |
+
final_clip = final_clip.set_audio(video.audio)
|
| 269 |
+
|
| 270 |
+
# Write the final video
|
| 271 |
+
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
| 272 |
+
|
| 273 |
+
# Close the video clips
|
| 274 |
+
video.close()
|
| 275 |
+
final_clip.close()
|
| 276 |
+
|
| 277 |
+
if os.path.exists(heatmap_video_path):
|
| 278 |
+
print(f"Heatmap video created at: {heatmap_video_path}")
|
| 279 |
+
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
| 280 |
+
return heatmap_video_path
|
| 281 |
+
else:
|
| 282 |
+
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
| 283 |
+
return None
|
| 284 |
+
|
| 285 |
+
# Define the create_heatmap function
|
| 286 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
| 287 |
frame_count = int(t * video_fps)
|
| 288 |
|
|
|
|
| 312 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
| 313 |
plt.close(fig)
|
| 314 |
return heatmap_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
def combine_video_and_heatmap(t):
|
| 317 |
video_frame = video.get_frame(t)
|