Spaces:
Runtime error
Runtime error
Update anomaly_detection.py
Browse files- anomaly_detection.py +16 -5
anomaly_detection.py
CHANGED
|
@@ -58,7 +58,7 @@ def vae_loss(recon_x, x, mu, logvar):
|
|
| 58 |
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
| 59 |
return BCE + KLD
|
| 60 |
|
| 61 |
-
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
| 62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
|
| 64 |
# Normalize posture
|
|
@@ -75,16 +75,24 @@ def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
|
| 75 |
if X_posture_scaled.dim() == 2:
|
| 76 |
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device)
|
| 79 |
model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device)
|
|
|
|
| 80 |
|
| 81 |
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 82 |
optimizer_posture = optim.Adam(model_posture.parameters())
|
|
|
|
| 83 |
|
| 84 |
# Train models
|
| 85 |
-
for epoch in range(epochs):
|
| 86 |
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 87 |
-
(model_posture, optimizer_posture, X_posture_scaled)
|
|
|
|
| 88 |
model.train()
|
| 89 |
optimizer.zero_grad()
|
| 90 |
recon_batch, mu, logvar = model(X)
|
|
@@ -92,16 +100,19 @@ def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
|
| 92 |
loss.backward()
|
| 93 |
optimizer.step()
|
| 94 |
|
| 95 |
-
# Compute reconstruction error for embeddings and
|
| 96 |
model_embeddings.eval()
|
| 97 |
model_posture.eval()
|
|
|
|
| 98 |
with torch.no_grad():
|
| 99 |
recon_embeddings, _, _ = model_embeddings(X_embeddings)
|
| 100 |
recon_posture, _, _ = model_posture(X_posture_scaled)
|
|
|
|
| 101 |
mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 102 |
mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
|
|
|
| 103 |
|
| 104 |
-
return mse_embeddings, mse_posture
|
| 105 |
|
| 106 |
def determine_anomalies(mse_values, threshold):
|
| 107 |
mean = np.mean(mse_values)
|
|
|
|
| 58 |
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
| 59 |
return BCE + KLD
|
| 60 |
|
| 61 |
+
def anomaly_detection(X_embeddings, X_posture, X_voice, epochs=200, patience=5):
|
| 62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
|
| 64 |
# Normalize posture
|
|
|
|
| 75 |
if X_posture_scaled.dim() == 2:
|
| 76 |
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 77 |
|
| 78 |
+
# Process voice embeddings
|
| 79 |
+
X_voice = torch.FloatTensor(X_voice).to(device)
|
| 80 |
+
if X_voice.dim() == 2:
|
| 81 |
+
X_voice = X_voice.unsqueeze(0)
|
| 82 |
+
|
| 83 |
model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device)
|
| 84 |
model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device)
|
| 85 |
+
model_voice = VAE(input_size=X_voice.shape[2]).to(device)
|
| 86 |
|
| 87 |
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 88 |
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 89 |
+
optimizer_voice = optim.Adam(model_voice.parameters())
|
| 90 |
|
| 91 |
# Train models
|
| 92 |
+
for epoch in range(int(epochs)): # Ensure epochs is an integer
|
| 93 |
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 94 |
+
(model_posture, optimizer_posture, X_posture_scaled),
|
| 95 |
+
(model_voice, optimizer_voice, X_voice)]:
|
| 96 |
model.train()
|
| 97 |
optimizer.zero_grad()
|
| 98 |
recon_batch, mu, logvar = model(X)
|
|
|
|
| 100 |
loss.backward()
|
| 101 |
optimizer.step()
|
| 102 |
|
| 103 |
+
# Compute reconstruction error for embeddings, posture, and voice
|
| 104 |
model_embeddings.eval()
|
| 105 |
model_posture.eval()
|
| 106 |
+
model_voice.eval()
|
| 107 |
with torch.no_grad():
|
| 108 |
recon_embeddings, _, _ = model_embeddings(X_embeddings)
|
| 109 |
recon_posture, _, _ = model_posture(X_posture_scaled)
|
| 110 |
+
recon_voice, _, _ = model_voice(X_voice)
|
| 111 |
mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 112 |
mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 113 |
+
mse_voice = F.mse_loss(recon_voice, X_voice, reduction='none').mean(dim=2).cpu().numpy().squeeze()
|
| 114 |
|
| 115 |
+
return mse_embeddings, mse_posture, mse_voice
|
| 116 |
|
| 117 |
def determine_anomalies(mse_values, threshold):
|
| 118 |
mean = np.mean(mse_values)
|