Spaces:
Runtime error
Runtime error
Update anomaly_detection.py
Browse files- anomaly_detection.py +87 -87
anomaly_detection.py
CHANGED
|
@@ -1,88 +1,88 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.optim as optim
|
| 4 |
-
import numpy as np
|
| 5 |
-
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class Autoencoder(nn.Module):
|
| 9 |
-
def __init__(self, input_size):
|
| 10 |
-
super(Autoencoder, self).__init__()
|
| 11 |
-
self.encoder = nn.Sequential(
|
| 12 |
-
nn.Linear(input_size, 256),
|
| 13 |
-
nn.ReLU(),
|
| 14 |
-
nn.Linear(256, 128),
|
| 15 |
-
nn.ReLU(),
|
| 16 |
-
nn.Linear(128, 64),
|
| 17 |
-
nn.ReLU(),
|
| 18 |
-
nn.Linear(64, 32)
|
| 19 |
-
)
|
| 20 |
-
self.decoder = nn.Sequential(
|
| 21 |
-
nn.Linear(32, 64),
|
| 22 |
-
nn.ReLU(),
|
| 23 |
-
nn.Linear(64, 128),
|
| 24 |
-
nn.ReLU(),
|
| 25 |
-
nn.Linear(128, 256),
|
| 26 |
-
nn.ReLU(),
|
| 27 |
-
nn.Linear(256, input_size)
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
def forward(self, x):
|
| 31 |
-
batch_size, seq_len, _ = x.size()
|
| 32 |
-
x = x.view(batch_size * seq_len, -1)
|
| 33 |
-
encoded = self.encoder(x)
|
| 34 |
-
decoded = self.decoder(encoded)
|
| 35 |
-
return decoded.view(batch_size, seq_len, -1)
|
| 36 |
-
|
| 37 |
-
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
| 38 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
-
|
| 40 |
-
# Normalize posture
|
| 41 |
-
scaler_posture = MinMaxScaler()
|
| 42 |
-
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
| 43 |
-
|
| 44 |
-
# Process facial embeddings
|
| 45 |
-
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 46 |
-
if X_embeddings.dim() == 2:
|
| 47 |
-
X_embeddings = X_embeddings.unsqueeze(0)
|
| 48 |
-
|
| 49 |
-
# Process posture
|
| 50 |
-
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
| 51 |
-
if X_posture_scaled.dim() == 2:
|
| 52 |
-
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 53 |
-
|
| 54 |
-
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
| 55 |
-
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
|
| 56 |
-
|
| 57 |
-
criterion = nn.MSELoss()
|
| 58 |
-
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 59 |
-
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 60 |
-
|
| 61 |
-
# Train models
|
| 62 |
-
for epoch in range(epochs):
|
| 63 |
-
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 64 |
-
(model_posture, optimizer_posture, X_posture_scaled)]:
|
| 65 |
-
model.train()
|
| 66 |
-
optimizer.zero_grad()
|
| 67 |
-
output = model(X)
|
| 68 |
-
loss = criterion(output, X)
|
| 69 |
-
loss.backward()
|
| 70 |
-
optimizer.step()
|
| 71 |
-
|
| 72 |
-
# Compute MSE for embeddings and posture
|
| 73 |
-
model_embeddings.eval()
|
| 74 |
-
model_posture.eval()
|
| 75 |
-
with torch.no_grad():
|
| 76 |
-
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
| 77 |
-
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
|
| 78 |
-
|
| 79 |
-
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
| 80 |
-
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
|
| 81 |
-
|
| 82 |
-
return mse_embeddings, mse_posture
|
| 83 |
-
|
| 84 |
-
def determine_anomalies(mse_values, threshold):
|
| 85 |
-
mean = np.mean(mse_values)
|
| 86 |
-
std = np.std(mse_values)
|
| 87 |
-
anomalies = mse_values > (mean + threshold * std)
|
| 88 |
return anomalies
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
+
|
| 7 |
+
@spaces.GPU(duration=300)
|
| 8 |
+
class Autoencoder(nn.Module):
|
| 9 |
+
def __init__(self, input_size):
|
| 10 |
+
super(Autoencoder, self).__init__()
|
| 11 |
+
self.encoder = nn.Sequential(
|
| 12 |
+
nn.Linear(input_size, 256),
|
| 13 |
+
nn.ReLU(),
|
| 14 |
+
nn.Linear(256, 128),
|
| 15 |
+
nn.ReLU(),
|
| 16 |
+
nn.Linear(128, 64),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.Linear(64, 32)
|
| 19 |
+
)
|
| 20 |
+
self.decoder = nn.Sequential(
|
| 21 |
+
nn.Linear(32, 64),
|
| 22 |
+
nn.ReLU(),
|
| 23 |
+
nn.Linear(64, 128),
|
| 24 |
+
nn.ReLU(),
|
| 25 |
+
nn.Linear(128, 256),
|
| 26 |
+
nn.ReLU(),
|
| 27 |
+
nn.Linear(256, input_size)
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
batch_size, seq_len, _ = x.size()
|
| 32 |
+
x = x.view(batch_size * seq_len, -1)
|
| 33 |
+
encoded = self.encoder(x)
|
| 34 |
+
decoded = self.decoder(encoded)
|
| 35 |
+
return decoded.view(batch_size, seq_len, -1)
|
| 36 |
+
|
| 37 |
+
def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
|
| 38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
+
|
| 40 |
+
# Normalize posture
|
| 41 |
+
scaler_posture = MinMaxScaler()
|
| 42 |
+
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1))
|
| 43 |
+
|
| 44 |
+
# Process facial embeddings
|
| 45 |
+
X_embeddings = torch.FloatTensor(X_embeddings).to(device)
|
| 46 |
+
if X_embeddings.dim() == 2:
|
| 47 |
+
X_embeddings = X_embeddings.unsqueeze(0)
|
| 48 |
+
|
| 49 |
+
# Process posture
|
| 50 |
+
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device)
|
| 51 |
+
if X_posture_scaled.dim() == 2:
|
| 52 |
+
X_posture_scaled = X_posture_scaled.unsqueeze(0)
|
| 53 |
+
|
| 54 |
+
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device)
|
| 55 |
+
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device)
|
| 56 |
+
|
| 57 |
+
criterion = nn.MSELoss()
|
| 58 |
+
optimizer_embeddings = optim.Adam(model_embeddings.parameters())
|
| 59 |
+
optimizer_posture = optim.Adam(model_posture.parameters())
|
| 60 |
+
|
| 61 |
+
# Train models
|
| 62 |
+
for epoch in range(epochs):
|
| 63 |
+
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
|
| 64 |
+
(model_posture, optimizer_posture, X_posture_scaled)]:
|
| 65 |
+
model.train()
|
| 66 |
+
optimizer.zero_grad()
|
| 67 |
+
output = model(X)
|
| 68 |
+
loss = criterion(output, X)
|
| 69 |
+
loss.backward()
|
| 70 |
+
optimizer.step()
|
| 71 |
+
|
| 72 |
+
# Compute MSE for embeddings and posture
|
| 73 |
+
model_embeddings.eval()
|
| 74 |
+
model_posture.eval()
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy()
|
| 77 |
+
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy()
|
| 78 |
+
|
| 79 |
+
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze()
|
| 80 |
+
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze()
|
| 81 |
+
|
| 82 |
+
return mse_embeddings, mse_posture
|
| 83 |
+
|
| 84 |
+
def determine_anomalies(mse_values, threshold):
|
| 85 |
+
mean = np.mean(mse_values)
|
| 86 |
+
std = np.std(mse_values)
|
| 87 |
+
anomalies = mse_values > (mean + threshold * std)
|
| 88 |
return anomalies
|