Spaces:
Runtime error
Runtime error
Update visualization.py
Browse files- visualization.py +187 -176
visualization.py
CHANGED
|
@@ -1,177 +1,188 @@
|
|
| 1 |
-
import matplotlib.pyplot as plt
|
| 2 |
-
import seaborn as sns
|
| 3 |
-
import numpy as np
|
| 4 |
-
import pandas as pd
|
| 5 |
-
from matplotlib.patches import Rectangle
|
| 6 |
-
from utils import seconds_to_timecode
|
| 7 |
-
from anomaly_detection import determine_anomalies
|
| 8 |
-
|
| 9 |
-
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
|
| 10 |
-
plt.figure(figsize=(16, 8), dpi=400)
|
| 11 |
-
fig, ax = plt.subplots(figsize=(16, 8))
|
| 12 |
-
|
| 13 |
-
if 'Seconds' not in df.columns:
|
| 14 |
-
df['Seconds'] = df['Timecode'].apply(
|
| 15 |
-
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 16 |
-
|
| 17 |
-
# Ensure df and mse_values have the same length and remove NaN values
|
| 18 |
-
min_length = min(len(df), len(mse_values))
|
| 19 |
-
df = df.iloc[:min_length]
|
| 20 |
-
mse_values = mse_values[:min_length]
|
| 21 |
-
|
| 22 |
-
# Remove NaN values
|
| 23 |
-
mask = ~np.isnan(mse_values)
|
| 24 |
-
df = df[mask]
|
| 25 |
-
mse_values = mse_values[mask]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
ax.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
ax.
|
| 101 |
-
ax.
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
ax.
|
| 173 |
-
ax.
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
return fig
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
import seaborn as sns
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from matplotlib.patches import Rectangle
|
| 6 |
+
from utils import seconds_to_timecode
|
| 7 |
+
from anomaly_detection import determine_anomalies
|
| 8 |
+
|
| 9 |
+
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
|
| 10 |
+
plt.figure(figsize=(16, 8), dpi=400)
|
| 11 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
| 12 |
+
|
| 13 |
+
if 'Seconds' not in df.columns:
|
| 14 |
+
df['Seconds'] = df['Timecode'].apply(
|
| 15 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 16 |
+
|
| 17 |
+
# Ensure df and mse_values have the same length and remove NaN values
|
| 18 |
+
min_length = min(len(df), len(mse_values))
|
| 19 |
+
df = df.iloc[:min_length]
|
| 20 |
+
mse_values = mse_values[:min_length]
|
| 21 |
+
|
| 22 |
+
# Remove NaN values
|
| 23 |
+
mask = ~np.isnan(mse_values)
|
| 24 |
+
df = df[mask]
|
| 25 |
+
mse_values = mse_values[mask]
|
| 26 |
+
|
| 27 |
+
# Calculate rolling mean and std
|
| 28 |
+
mean = pd.Series(mse_values).rolling(window=10, min_periods=1).mean()
|
| 29 |
+
std = pd.Series(mse_values).rolling(window=10, min_periods=1).std()
|
| 30 |
+
|
| 31 |
+
# Plot scatter points
|
| 32 |
+
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5)
|
| 33 |
+
|
| 34 |
+
# Plot mean line and std fill only for continuous valid segments
|
| 35 |
+
valid_mask = ~np.isnan(mse_values)
|
| 36 |
+
segments = np.split(np.arange(len(df)), np.where(~valid_mask)[0])
|
| 37 |
+
for segment in segments:
|
| 38 |
+
if len(segment) > 0 and valid_mask[segment[0]]:
|
| 39 |
+
ax.plot(df['Seconds'].iloc[segment], mean.iloc[segment], color=color, linewidth=0.5)
|
| 40 |
+
ax.fill_between(df['Seconds'].iloc[segment],
|
| 41 |
+
mean.iloc[segment] - std.iloc[segment],
|
| 42 |
+
mean.iloc[segment] + std.iloc[segment],
|
| 43 |
+
color=color, alpha=0.1)
|
| 44 |
+
|
| 45 |
+
# Add median line
|
| 46 |
+
median = np.median(mse_values)
|
| 47 |
+
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
| 48 |
+
|
| 49 |
+
# Add threshold line
|
| 50 |
+
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
|
| 51 |
+
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
|
| 52 |
+
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')
|
| 53 |
+
|
| 54 |
+
anomalies = determine_anomalies(mse_values, anomaly_threshold)
|
| 55 |
+
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
|
| 56 |
+
|
| 57 |
+
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
|
| 58 |
+
|
| 59 |
+
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
|
| 60 |
+
df['Seconds'].iloc[anomalies],
|
| 61 |
+
mse_values[anomalies]))
|
| 62 |
+
anomaly_data.sort(key=lambda x: x[1])
|
| 63 |
+
|
| 64 |
+
grouped_anomalies = []
|
| 65 |
+
current_group = []
|
| 66 |
+
for timecode, sec, mse in anomaly_data:
|
| 67 |
+
if not current_group or sec - current_group[-1][1] <= time_threshold:
|
| 68 |
+
current_group.append((timecode, sec, mse))
|
| 69 |
+
else:
|
| 70 |
+
grouped_anomalies.append(current_group)
|
| 71 |
+
current_group = [(timecode, sec, mse)]
|
| 72 |
+
if current_group:
|
| 73 |
+
grouped_anomalies.append(current_group)
|
| 74 |
+
|
| 75 |
+
for group in grouped_anomalies:
|
| 76 |
+
start_sec = group[0][1]
|
| 77 |
+
end_sec = group[-1][1]
|
| 78 |
+
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
|
| 79 |
+
facecolor='red', alpha=0.2, zorder=1)
|
| 80 |
+
ax.add_patch(rect)
|
| 81 |
+
|
| 82 |
+
for group in grouped_anomalies:
|
| 83 |
+
highest_mse_anomaly = max(group, key=lambda x: x[2])
|
| 84 |
+
timecode, sec, mse = highest_mse_anomaly
|
| 85 |
+
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
|
| 86 |
+
ha='center', fontsize=6, color='red')
|
| 87 |
+
|
| 88 |
+
max_seconds = df['Seconds'].max()
|
| 89 |
+
num_ticks = 100
|
| 90 |
+
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 91 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
| 92 |
+
|
| 93 |
+
ax.set_xticks(tick_locations)
|
| 94 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 95 |
+
|
| 96 |
+
ax.set_xlabel('Timecode')
|
| 97 |
+
ax.set_ylabel('Mean Squared Error')
|
| 98 |
+
ax.set_title(title)
|
| 99 |
+
|
| 100 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 101 |
+
ax.legend()
|
| 102 |
+
plt.tight_layout()
|
| 103 |
+
plt.close()
|
| 104 |
+
return fig, anomaly_frames
|
| 105 |
+
|
| 106 |
+
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
| 107 |
+
plt.figure(figsize=(16, 3), dpi=400)
|
| 108 |
+
fig, ax = plt.subplots(figsize=(16, 3))
|
| 109 |
+
|
| 110 |
+
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
|
| 111 |
+
ax.set_xlabel('Mean Squared Error')
|
| 112 |
+
ax.set_ylabel('Number of Samples')
|
| 113 |
+
ax.set_title(title)
|
| 114 |
+
|
| 115 |
+
mean = np.mean(mse_values)
|
| 116 |
+
std = np.std(mse_values)
|
| 117 |
+
threshold = mean + anomaly_threshold * std
|
| 118 |
+
|
| 119 |
+
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
|
| 120 |
+
|
| 121 |
+
plt.tight_layout()
|
| 122 |
+
plt.close()
|
| 123 |
+
return fig
|
| 124 |
+
|
| 125 |
+
def plot_mse_heatmap(mse_values, title, df):
|
| 126 |
+
plt.figure(figsize=(20, 3), dpi=400)
|
| 127 |
+
fig, ax = plt.subplots(figsize=(20, 3))
|
| 128 |
+
|
| 129 |
+
# Reshape MSE values to 2D array for heatmap
|
| 130 |
+
mse_2d = mse_values.reshape(1, -1)
|
| 131 |
+
|
| 132 |
+
# Create heatmap
|
| 133 |
+
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
|
| 134 |
+
|
| 135 |
+
# Set x-axis ticks to timecodes
|
| 136 |
+
num_ticks = 60
|
| 137 |
+
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
|
| 138 |
+
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]
|
| 139 |
+
|
| 140 |
+
ax.set_xticks(tick_locations)
|
| 141 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
|
| 142 |
+
|
| 143 |
+
ax.set_title(title)
|
| 144 |
+
|
| 145 |
+
# Remove y-axis labels
|
| 146 |
+
ax.set_yticks([])
|
| 147 |
+
|
| 148 |
+
plt.tight_layout()
|
| 149 |
+
plt.close()
|
| 150 |
+
return fig
|
| 151 |
+
|
| 152 |
+
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
| 153 |
+
plt.figure(figsize=(16, 8), dpi=400)
|
| 154 |
+
fig, ax = plt.subplots(figsize=(16, 8))
|
| 155 |
+
|
| 156 |
+
df['Seconds'] = df['Timecode'].apply(
|
| 157 |
+
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
|
| 158 |
+
|
| 159 |
+
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
|
| 160 |
+
posture_frames, posture_scores = zip(*posture_data)
|
| 161 |
+
|
| 162 |
+
# Create a new dataframe for posture data
|
| 163 |
+
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
|
| 167 |
+
|
| 168 |
+
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
|
| 169 |
+
mean = posture_df['Score'].rolling(window=10).mean()
|
| 170 |
+
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
|
| 171 |
+
|
| 172 |
+
ax.set_xlabel('Timecode')
|
| 173 |
+
ax.set_ylabel('Posture Score')
|
| 174 |
+
ax.set_title("Body Posture Over Time")
|
| 175 |
+
|
| 176 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 177 |
+
|
| 178 |
+
max_seconds = df['Seconds'].max()
|
| 179 |
+
num_ticks = 80
|
| 180 |
+
tick_locations = np.linspace(0, max_seconds, num_ticks)
|
| 181 |
+
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
|
| 182 |
+
|
| 183 |
+
ax.set_xticks(tick_locations)
|
| 184 |
+
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
|
| 185 |
+
|
| 186 |
+
plt.tight_layout()
|
| 187 |
+
plt.close()
|
| 188 |
return fig
|